
Reference

Manual

DeviceNet
RS�232
Interface
Module
Communication
Protocol

(Cat. No. 1770�KFD)

Allen�Bradley

Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this
control equipment must satisfy themselves that all necessary steps
have been taken to assure that each application and use meets all
performance and safety requirements, including any applicable laws,
regulations, codes and standards.

The illustrations, charts, sample programs and layout examples
shown in this guide are intended solely for example. Since there are
many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability
(to include intellectual property liability) for actual use based upon
the examples shown in this publication.

Allen-Bradley publication SGI-1.1, “Safety Guidelines For The
Application, Installation and Maintenance of Solid State Control”
(available from your local Allen-Bradley office) describes some
important differences between solid-state equipment and
electromechanical devices which should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in
whole or in part, without written permission of Allen-Bradley
Company, Inc. is prohibited.

Throughout this manual we make notes to alert you to possible
injury to people or damage to equipment under specific
circumstances.

!
ATTENTION: Identifies information about practices
or circumstances that can lead to personal injury or
death, property damage, or economic loss.

Attention helps you:

• Identify a hazard.

• Avoid the hazard.

• Recognize the consequences.

Important: Identifies information that is especially important for
successful application and understanding of the product.

Important: We recommend you frequently backup your application
programs on appropriate storage medium to avoid
possible data loss.

IBM is a registered trademark of International Business Machines, Incorporated.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Important User Information

Using This Manual i.

Document Objectives i.

What to Expect i.

Assumptions About You i.

How to Use This Manual i.

Document Conventions ii.

Manual Terminology ii.

Related Publications ii.

Module Communication Basics 1�1.

Chapter Contents 1�1.

About the Module 1�1.

Serial Connection 1�3.

Link�Level Communication 1�3.

DF1 Full�Duplex Protocol 1�4.

PCCC Protocol 1�4.

DeviceNet Protocol 1�4.

The Module's Message Format 1�5.

Module�Supported Objects 1�6.

Full�Duplex DF1 Protocol 2�1.

Chapter Contents 2�1.

About DF1 Protocol 2�1.

Character Transmission 2�2.

Transmission Symbols 2�2.

Message Packet Fields 2�3.

Block Check 2�3.

Two�Way Simultaneous Operation 2�5.

Environment Definition 2�5.

How the Transmitter Operates 2�6.

How the Receiver Operates 2�8.

Host/Module Message Transmission Examples 2�12.

Normal Message Transmission 2�12.

When a Message Transfer Fails 2�13.

When a Retransmission is Requested 2�14.

Table of Contents

Table of Contentsii

Module Communication Over the DF1 Link 3�1.

Chapter Contents 3�1.

Module Serial�Link Autobaud 3�1.

The RS�232 Heartbeat 3�2.

Host and Module Local Connections 3�2.

Accessing Local Objects 3�3.

Inside the DeviceNet Message 3�4.

Before Network Communication 3�4.

Stop Service 3�4.

Configure Node Address and Baud Rate 3�5.

Start Service 3�5.

Communication On The DeviceNet Network 3�5.

Sending and Receiving Unconnected DeviceNet Messages 3�6. . . .

Sending DeviceNet Messages 3�6.

Receiving Connected DeviceNet Messages 3�7.

Link Communication Example 4�1.

Chapter Contents 4�1.

Initializing Your Module 4�2.

Module Reset 4�2.

Serial�Link Autobaud 4�3.

Stop Service 4�4.

Set Node Address 4�5.

Set Baud Rate 4�6.

Start Service 4�7.

Creating Screeners 4�8.

Deleting Screeners 4�9.

Module Supported Objects A�1.

Appendix Contents A�1.

DeviceNet Object A�1.

Instance Services A�1.

Instance Attributes A�1.

MAC ID: A�2.

Baud Rate: A�2.

1770�KFD DF1 Object A�3.

Instance Services A�3.

Instance Attributes A�3.

Identity Object A�4.

Class Services A�4.

Instance Attributes A�4.

Vendor A�5.

Device Type A�5.

Product Code A�5.

Revision A�5.

Table of Contents iii

Status A�5.

Serial Number A�5.

State A�5.

Link Object A�6.

Class Services A�6.

Instance Services A�6.

Instance Attributes A�6.

Power Management Object A�7.

Instance Services A�7.

Instance Attributes A�7.

RS�232 Object A�7.

Instance Services A�7.

Troubleshooting B�1.

Appendix Contents B�1.

Troubleshooting the Module B�2.

Preface

1770�6.5.22

Using This Manual

The purpose of this reference manual is to aid you in:

• writing applications that use the 1770-KFD interface module

• communicating with the 1770-KFD over the RS-232 serial-link

• preparing the 1770-KFD to be an interface module to the
DeviceNet network

This manual explains how to communicate with the 1770-KFD
interface module over an RS-232 serial-link. The protocol used to
accomplish this includes:

• 1770-KFD specific, full-duplex DF1 protocol

• PCCC protocol

• DeviceNet protocol

Please note that this manual covers communication between your
host computer and the 1770-KFD only. It does not explain how to
communicate on the DeviceNet network.

We assume that you are a product developer or technical user and:

• have a general familiarity with communication protocols

• have a knowledge of RS-232

• have access to the DeviceNet Specifications Volumes I and II

• have some knowledge of object-oriented modelling concepts

This manual can be divided into four main sections as shown below.

Chapter 3

Module
Communication
Over the
DF1 link

Chapter 2

Full�Duplex
DF1 Protocol

Module
Communication
Basics

Chapter 1 Chapter 4

Link
Communication
Example

Appendix A

Module
Supported
Objects

Appendix B

Troubleshooting

Introduction to
how your
module works

Detailed information on how
communication between
your host�computer and
module is structured

Detailed examples of
how to initialize your
module, create
screeners and delete
screeners (screeners are
for connected messages)

Reference information needed in
coding messages and
troubleshooting errors

Document Objectives

What to Expect

Assumptions About You

How to Use This Manual

Using This Manual ii

1770�6.5.22

Document Conventions

Often you will see icons in the left margin of a page. These icons are
designed to call your attention to more sources of information
concerning the subject about which you are reading.

The more icon is placed beside paragraphs that refer you to other
publications for additional information.

The reference icon gives you a page number within this document
where more information about what you are reading can be found.

Manual Terminology

The table below lists terms, and their respective definitions, that are
frequently used in this manual.

Frequently used term Definition

BCC block check character

hex hexadecimal format

host
a host�computer

it can be a desktop, laptop, or notebook personal computer

link�level
the physical communication layer between your

host�computer and the 1770�KFD interface module

module the 1770�KFD RS�232 interface module

network
in this document, the term network always refers to the

DeviceNet network

PCCC

Programmable Controller Communication Commands

an application�level command set that Allen�Bradley

programmable controllers use to communicate

across networks

serial�link
the RS�232 serial connection between your host�computer

and the 1770�KFD interface module

Publication name Publication number

DeviceNet RS�232 Interface Module

Installation Instructions
1770�5.6

DeviceNet Specification � Volume I available through ODVA*

 � Volume II available through ODVA*

Data Highway/Data Highway Plus /DH�485

Communication Protocol and Command Set

Reference Manual

1770�6.5.16

*ODVA is the Open DeviceNET Vendors Association. To obtain the specifications, contact:

ODVA

Attn: Bill Moss

8222 Wiles Road, Suite 287

Coral Springs, FL 33067

voice: (305) 340�5412

fax : (305) 340�5413

email: BillMoss@industry.net

Reference

Go to page:

Related Publications

Chapter 1

1770�6.5.22

Module Communication Basics

This chapter introduces the 1770-KFD module as a RS-232 interface
using the full-duplex DF1 communication-protocol. In addition, this
chapter explains applicable DeviceNet objects.

For information about See page

serial connection 1�3

link level communication 1�3

module supported objects 1�6

The 1770-KFD module is an interface to the DeviceNet network for
a host computer. The module connects to the host computer through
a standard RS-232 serial communication-port and to the network via
DeviceNet cable. Through the module, a host computer can connect
to the network anywhere along its cable. This connection can be
permanent or may be removed and reconnected as needed. In
addition, the module can connect directly to a device via DeviceNet
cable for a physical point-to-point connection.

device

host
computer

1770�KFD
module

RS�232
cable

DeviceNet network devices

connects directly to
a single device

connects to a
multi�device network

or

host
computer

1770�KFD
module

RS�232
cable

DeviceNet
cable

DeviceNet
cable

Chapter Contents

About the Module

Module Communication Basics 1-2

1770�6.5.22

The module can also provide access to a DeviceNet network
remotely through a modem. You can connect the module to two
types of standard modems:

• DTE-controlled answer

• auto-answer

host
computer

1770�KFD
module

DeviceNet network devices

modemmodem
telephone
line

RS�232
cable

RS�232
cable

DeviceNet
cable

Detectable baud rates for the module include:

• 1200 • 19200
• 2400 • 38400
• 4800 • 57600
• 9600

As illustrated below, the module contains all the components needed
to make it a stand-alone, portable interface.

DeviceNET

RS-232

Network
Status Indicator

Module
Status Indicator

RS�232
Status Indicator

NETWORK
STATUS

MODULE
STATUS

RS�232
STATUS

DC
IN
(9V)

1770�KFD

RS�232 PORT

PROCESSOR

DeviceNet CONTROLLER

5�pin unsealed DeviceNet connector

9�pin D�shell
RS�232 connector

Module Communication Basics 1-3

1770�6.5.22

The module can connect to any PC compatible desktop, laptop, and
notebook computer that is equipped with an RS-232 serial
communication-port. In addition, the module can connect to any
RS-232 device, which can include devices such as embedded
controls and RS-232 sensor products. During normal operation, a
connection between the host computer and the module is
continuously open.

The RS-232 link is limited in bandwidth when compared to the
DeviceNet network; however, the module has the ability to buffer
incoming network data so that nothing is lost. The speed of data
transfer between the host and module, or baud rate, is determined by
the host; the module autobauds to match this baud rate.

The module uses a layered link-protocol, illustrated below, to
facilitate communication between your host and module. The
protocol layers described in the following sections make up the
required protocol between a host and module over the RS-232
serial-link.

The next five bytes is
PCCC code. With the
exception of the command
and packet counter bytes
(transaction word, TNSW),
the module does not use
this code.

The DeviceNet portion of
this protocol contains a
CAN ID and a DeviceNet
message.

The final three bytes of the
1770�KFD protocol is DF1
code that terminates the
message and performs a
validity check.

DF1DeviceNetDF1 PCCC

1.

2.

3.

4.

The first two bytes of
the protocol is
full�duplex DF1 code
that indicates the start
of a message.

Serial Connection

Link�Level Communication

Module Communication Basics 1-4

1770�6.5.22

DF1 Full�Duplex Protocol

Full-duplex combines features of subcategories D1 (data
transparency) and F1 (two-way simultaneous transmission with
embedded responses) of ANSI x3.28. All communication between
the host and the module uses this protocol.

PCCC Protocol

PCCC protocol is descriptive data after the DF1 segment, which is
placed at the beginning of a DeviceNet message. Four of the five
inserted fields do not change; none of the fields need to be
manipulated. However, the fifth field is a packet counter that must be
incremented with each message. Note that each field is one byte long
except for this fifth field which is two bytes.

DeviceNet Protocol

The DeviceNet protocol pertains to the actual network data
embedded inside a message exchanged between the module and host.
This information is being sent or received on or from a DeviceNet
network. In some cases, this information is destined for the module
only.

When the module receives a DeviceNet message from the network, it
attaches this packaging to the data before sending it to the host.
Before transmitting a DeviceNet message onto the network, the
module strips away the DF1 and PCCC packaging.

Reference

Go to page:

 2�1

Reference

Go to page:

 3�2

Module Communication Basics 1-5

1770�6.5.22

The Module's Message Format

A basic DeviceNet message is packaged with DF1 and PCCC prefix
data and DF1 suffix data as illustrated below. For message
transmission between your host and module, the 1770-KFD protocol
uses the following message format:

Layer Name Type Description

DF1
DLE USINT DLE = 10hex

DF1
STX USINT STX = 02hex

DST USINT Destination = 0 (unused)

SRC USINT Source = 0 (unused)

PCCC
CMD USINT

Command = 0Chex

(DeviceNet message)

STS USINT Status = 0 (unused)

TNSW* UINT
packet counter (incremented

every message)

Data

CAN ID UINT
CAN Indentifier (DeviceNet

format)
Data

Data array of USINT
CAN Data (DeviceNet format,

8 bytes maximum)

DLE USINT DLE = 10hex

DF1 ETX USINT ETX = 03hex

BCC USINT Block Check Character

Shading indicates values that do not change. They are listed for verification purposes only.

The TNSW (transaction word) is two bytes long.

 For more information about the 8 bit Unsigned Short Integer
(USINT) and the 16 bit Unsigned Integer (UINT), refer to the Data
Management portion of the DeviceNet Specification, Volume I.

The first two bytes of the
data field contain an 11
bit CAN identifier.

Module Communication Basics 1-6

1770�6.5.22

There are several module-supported objects:

Object Function

DeviceNet Object

used to provide the module's configuration and

status data

the DeviceNet object is always created but

cannot be deleted

DF1 Object
used to provide diagnostic data about the

DF1 link

Identity Object
used for general identification as a DeviceNet

network device

Link Object

used to configure and maintain CAN identifier

screeners which facilitate connected

network�messaging

Power Management Object
used to provide information about and to

configure the product power supply

RS�232 Object
used to provide information about and to

configure the serial�link's baud rate

Important: Devices on the network cannot directly access these
objects within the module. They can be accessed only
through the host over its RS-232 port.

Reference

Go to page:

 A�1

Module�Supported Objects

Chapter 2

1770�6.5.22

Full�Duplex DF1 Protocol

This chapter describes the data link-layer protocol your host and
module use to communicate. In addition, this chapter provides
full-duplex asynchronous link-protocol information as well as
information on data link-layer message-packet fields.

Because you are connecting an asynchronous interface-module to a
computer, you must program the computer to understand and to issue
the proper protocol-character sequences. Use this information to
determine how to program your host so that it can communicate with
your module.

For information about See page

character transmission 2�2

transmission symbols 2�2

message pakcet fields 2�3

two�way simultaneous operation 2�5

environment definition 2�5

host/module message transmission examples 2�12

This chapter explains how to use DF1 protocol to communicate with
the 1770-KFD interface module. However, it is not a comprehensive
explanation. For more information about DF1 protocol, refer to the
Data Highway/Data Highway Plus /DH-485 Communication
Protocol and Command Set reference manual.

DF1 protocol is an Allen-Bradley link protocol that combines
features of subcategories D1 (data transparency) and F1 (two-way
simultaneous transmission with embedded responses) of
ANSI x3.28.

DF1 protocol:

• is used over a point-to-point link to facilitate two-way
simultaneous transmission

• is intended for high performance applications that require the
highest possible throughput from the available medium

Chapter Contents

About DF1 Protocol

Full-Duplex DF1 Protocol 2-2

1770�6.5.22

The module sends data serially over the RS-232-C/RS-422-A
interface, one byte at a time. The transmission format conforms to
ANSI x3.16, CCITT V.4, and ISO 1177. Your computer should
conform to this mode of transmission:

• link protocol = full-duplex, DF1

• message type = asynchronous

• data size = eight bits

• parity = none

• stop bit = one

• validity check = block check character (BCC)

Full-duplex protocol is character-oriented. It uses the ASCII control
characters in the following table, extended to eight bits by adding a
zero for bit 7. DF1 combines these characters into control and data
symbols.

For the standard definition of these characters, refer to ANSI x3.4,
CCITT V.3, or ISO 646.

Abbreviation Hexadecimal value Binary value

STX 02 0000 0010

ETX 03 0000 0011

ENQ 05 0000 0101

ACK 06 0000 0110

DLE 10 0001 0000

NAK 15 0000 1111

The following symbols are used for communication between your
host and module:

Symbol Type Meaning

DLE STX control symbol sender symbol that indicates the start of a message

DLE ETX

BCC
control symbol sender symbol that terminates a message

DLE ACK control symbol
response symbol that signals when a message is

successfully received

DLE NAK control symbol
response symbol that signals when a message is not

successfully received

DLE ENQ control symbol
sender symbol that requests retransmission of a

response symbol from the receiver

APP DATA data symbol

single character data values between 00�0F and

11�FF. Includes data from application layer including

user programs and common application routines

DLE DLE data symbol symbol that represents the data value 10hex

Character Transmission

Transmission Symbols

Full-Duplex DF1 Protocol 2-3

1770�6.5.22

A data link-layer message packet starts with DLE STX and ends
with DLE ETX BCC, with application layer data in between. Data
symbols are only inside a message packet. Response symbols (DLE
ACK and DLE NAK) can also be transmitted inside a message
packet even though they are not considered part of it. Response
symbols transmitted within a message packet are referred to as
embedded responses.

Figure 2.1 shows the format of a full-duplex message packet and the
layer at which each portion is implemented. Note the BCC field at
the end of each message packet.

Figure 2.1
Packet Format for Full�Duplex Protocol

DST CMD STS

DST CMD STSSRC

DLE STX DLE ETX BCC
Field

TNSW
Data
(From Application Layer)

Command Data
From User
Application
Program

From Common
Application
Routines

Data Link
Layer Packet

Data from
Application Layers

00hex 0Chex 0Chex00hex

* * * *

* these fields are
predefined values
for the module.

Block Check

The block-check character (BCC) is a way of checking each
message-packet transmission’s accuracy. It is the two’s complement
of the eight-bit sum (module-256 arithmetic sum) of all application
layer data-bytes between a DLE STX and a DLE ETX BCC. It does
not include response symbols.

A message packet containing 08, 09, 06, 00, 02, 04, and 03
(decimal), appears as:

10 02 08 09 06 00 02 04 03 10 03 E0

DLE STX APP DATA DLE ETX BCC

The sum of the application data bytes in this message packet is 32
decimal or 20hex. The BCC is the 2’s complement of this sum, or
E0hex as shown in the binary calculation below:

0010 0000 20hex

1101 1111 1's compliment

 +1

���������������

 1110 0000 2's compliment (E0hex)

Message Packet Fields

Full-Duplex DF1 Protocol 2-4

1770�6.5.22

To quickly determine a BCC value, add up the application-layer
byte’s hex values. If the total is greater than 100hex, drop the most
significant digit. Then, subtract the result from 100hex. This should
give you the BCC. For example, the sum of 20hex, then:

100hex

�20hex

E0hex

Important: To transmit the value 10hex, you must use the data
symbol DLE DLE. However, only one of these DLE
data bytes is included in the BCC sum. For example, to
transmit the values 08, 09, 06, 00, 10, 04, and 03hex,
you would use the following message symbols:

10 02 08 09 06 00 10 10 04 03 10 03 D2

DLE STX APP DATA (DLE DLE) DLE EXT BCC

In this case, the sum of the application-layer data bytes is 2Ehex
because only one DLE byte is included in the BCC; therefore, the
BCC is D2hex.

Important: The BCC algorithm provides only a medium level of
data security. It cannot detect transposition of bytes
during transmission of a packet. It also cannot detect the
insertion or deletion of the value zero within a packet.

Full-Duplex DF1 Protocol 2-5

1770�6.5.22

To communicate with full-duplex protocol, the network uses two
physical circuits (cable systems) for two-way simultaneous message
transmission. Figure 2.2 shows an example of two-way
simultaneous operation.

Figure 2.2
Data Paths for Two�Way Simultaneous Operation

Path 1

Path 2

Path 3

Path 4

Transmitter A

Receiver A

Receiver B

Transmitter B

On the first circuit, transmitter A sends messages to receiver B (data
path 1) and receiver A sends response control symbols (DLE ACK,
DLE NAK) to transmitter B (data path 3).

On the second circuit, transmitter B sends messages to receiver A
(data path 4) and receiver B sends response control symbols (DLE
ACK, DLE NAK) to transmitter A (data path 2).

All messages and symbols on the first circuit are traveling in the
same direction (node A to node B) and all messages and symbols on
the second circuit are traveling in the opposite direction (B to A).

To implement four data paths with only two physical circuits, a
software multiplexer is needed to combine the message symbols with
the response symbols going in the same direction.

At the other end of the link, a software separator divides the message
symbols from the response symbols. The internal software sends the
message symbols to the appropriate receiver and the response
symbols to the appropriate transmitter.

To fully define the environment’s protocol, the transmitter needs to
know where to get the message it sends, and the receiver must have a
means of disposing of messages. These are
implementation-dependent functions which are respectively called
the message source and the message sink.

We assume that the message source:

• supplies one message at a time upon request from the transmitter

• requires notification of the success or failure of the transfer
before supplying the next message

Two�Way Simultaneous
Operation

Environment Definition

Full-Duplex DF1 Protocol 2-6

1770�6.5.22

When the message source is empty, the transmitter waits in an
inactive state until a message is available.

Whenever the receiver has received a message successfully, it
attempts to give it to the message sink. If the message sink is full, the
receiver must be notified.

Figure 2.3 shows the protocol environment for message symbols
from transmitter A to receiver B (path 1) and response codes from
receiver B to transmitter A (path 2).

Figure 2.3
Protocol Environment

Transmitter
A

Sink
Receiver
B

Source

Packet

Sink FullPacket Status

Path 1

Path 2

Packet

How the Transmitter Operates

Whenever the message source can supply a message and the
transmitter is not busy, it sends a message packet. It then starts a
timeout, and waits for a response symbol.

When a DLE ACK is received, the message has been successfully
transferred. After signaling the message source that the message was
successfully transmitted, the transmitter proceeds with the
next message.

If a DLE NAK is received, the message is retransmitted. The
transmitter restarts the timeout and waits again for a response. This
can be repeated several times. You can set a limit to the number of
times a message can be retransmitted for each module. If this limit is
exceeded, the message source is informed of the failure and the
transmitter proceeds with the next message.

If the timeout expires before a response is received, the transmitter
sends a DLE ENQ to request a retransmission of the last response. It
restarts the timeout and waits for a response.

You can also set a limit on the number of timeouts that are allowed
per message. If the enquiry (ENQ) limit is exceeded, the transmitter
signals the message source that the transmission has failed, and the
transmitter proceeds to the next message.

Full-Duplex DF1 Protocol 2-7

1770�6.5.22

Since there are only two response symbols defined, all other symbols
are undefined or invalid. If an invalid or undefinedresponse symbol
is received, the transmitter ignores it. A more precise and detailed
description of the actions of the transmitter appears in the following
structured English procedure.

TRANSMITTER is defined as
loop

Message=GET-MESSAGE-TO-SEND
Status=TRANSFER(Message)

 SIGNAL-RESULTS(Status)
 end loop
TRANSFER (Message) is defined as

initialize nak-limit and enq-limit
SEND(Message)

 start timeout
loop

WAIT for response on path 2 or timeout.
if received DLE ACK then return SUCCESS
else if received DLE NAK then

if nak-limit is exceeded then return FAILURE
else

begin
count NAK re-tries;
SEND-MESSAGE(message);
start timeout

end
else if timeout

if enq-limit is exceeded then return FAILURE
 else

begin
count ENQ re-tries;
send DLE ENQ on path 1;
start timeout

 end
end loop
SEND (message) is defined as

begin
BCC = 0
send DLE STX on path 1
for every byte in the message do

begin
add the byte to the BCC;
send the corresponding data symbol

on path 1
end

send DLE ETX BCC on path 1
end

GET-MESSAGE-TO-SEND
This is an operating-system-dependent interface
routine that waits and allows the rest of the
system to run until the message source has supplied
 a message to be sent.

SIGNAL-RESULTS
This is an implementation-dependent routine that
gives the message source the results of the
attempted message transfer.

WAIT
This is an operating-system-dependent routine
that waits for any of several events to occur
while allowing other parts of the system to run.

Full-Duplex DF1 Protocol 2-8

1770�6.5.22

Figure 2.4 is a flowchart of the software logic for implementing
the transmitter.

Figure 2.4
Software Logic for Implementing Transmitter

DataDLE STX DLE ETX BCC Field

Received
DLE ACK?

Timed out?

3* NAKs
received for this
message?

No No
Received
DLE NAK?

No

Yes Yes Yes

3* timeouts for
this message?

P

P

T

T

T = Ready to Transmit Next Message

= Recovery Procedure

* Default Values used by the Module

Yes Yes

No No

DLE ENQ

Message Packet

Retransmit Same Message

Timeout Loop

Legend:

Important: Depending on data-traffic and saturation level, you may
need to wait for a reply from the remote node before
transmitting the next message. You should implement
an option that lets the user choose the maximum
amount of outstanding messages that can exist at one
time. We suggest a selectable range of one to
three messages.

How the Receiver Operates

The receiver must be capable of responding to many adverse
situations. Many problems can arise.

Full-Duplex DF1 Protocol 2-9

1770�6.5.22

Some of the problems that can occur are:

• the message sink may be full, leaving the receiver with nowhere
to put a message

• a message may contain a parity error

• the BCC may be invalid

• the DLE STX or DLE ETX BCC may be missing

• the message may be too long or too short

• a spurious control or data symbol may occur outside a message

• a spurious control symbol may occur inside a message

• the DLE ACK response may be lost, causing the transmitter to
send a duplicate copy of a message already passed to the
message sink

The receiver keeps a record of the last response sent to the
transmitter. The value of this response is either ACK or NAK. It is
initialized to NAK. When a DLE ENQ (enquiry) is received from the
transmitter, the receiver sends the value of the last response.

The receiver ignores all input until receiving a DLE STX or a DLE
ENQ. If anything other than a DLE STX or DLE ENQ is received on
path one, the receiver sets the last response variable to a NAK.

If Then

a DLE ENQ is received from the transmitter
the last response is sent and the receiver

continues waiting for input

a DLE ACK is received
the BCC and message buffer are reset - and the

receiver starts building the message

While building a message, all data symbols are stored in the message
buffer and added to the BCC. If the buffer overflows, the receiver
continues summing the BCC, but the data is discarded.

If Then

any control symbols other than a DLE ETX BCC

are received

the message is aborted and a DLE NAK is sent

to the transmitter

a DLE ETX BCC is received
the error flag (the BCC), the message size, and

the address (optional) are all checked

the BCC, message size, or address

test fails
a DLE NAK is sent

duplicate message detection is enabled, the

message is valid, and its header is the same as

the previous message

the duplicate message is discarded without being

executed and a DLE ACK is sent

duplicate message detection is enabled, the

message is valid, but the header is not the same

as the previous message

the message�sink's state is tested

if the message sink is full a DLE NAK is sent

if the message sink is not full

the message is forwarded to the

message sink, the header information

is saved for the duplicate message

detector, and a DLE ACK is sent

Full-Duplex DF1 Protocol 2-10

1770�6.5.22

RECEIVER is defined as
variables

LAST-HEADER is 4 bytes copied out of the last good message
RESPONSE is the value of the last ACK or NAK sent
BCC is an 8-bit block check accumulator

LAST-HEADER = invalid
LAST RESPONSE = NAK
loop

reset parity error flag
GET-SYMBOL
if DLE STX then

begin
BCC = 0
GET-SYMBOL
while it is a data symbol

begin
if buffer is not overflowed put
data in buffer
GET-SYMBOL

end
if the control symbol is not a DLE ETX then send DLE
NAK
else if error flag is set then send DLE NAK
else if BCC is not zero then send DLE NAK
else if message is too small then send DLE NAK
else if message is too large then send DLE NAK
else if header is same as last message send a DLE ACK
else if message sink is full send DLE NAK
else

begin
send message to message sink
send a DLE ACK
save a last header

end
end

else if DLE ENQ then send LAST-RESPONSE
else LAST-RESPONSE = NAK

end loop
GET-SYMBOL is defined as

loop
GET-CHAR
if char is not DLE

begin
add char to BCC
return the char and data flag

end
else

begin
GET-CHAR
if char is a DLE

begin
add char to BCC
return DLE and data flag

end
else if char is an ACK or NAK send it to the transmitter
else if char is an ETX

begin
GET-CHAR
add char to BCC
return ETX with a control flag

end
else return char with a control flag

end
end loop

GET-CHAR is defined as an implementation-dependant function that returns one byte
of data from the link interface hardware

GET�CHAR is defined as an
implementation�dependant
function that returns one byte
of data from the link
interface hardware

Full-Duplex DF1 Protocol 2-11

1770�6.5.22

Figure 2.5 is a flowchart of the software logic for implementing
the receiver.

Figure 2.5
Receiver for Full�Duplex Protocol

Received
DLE
ENQ?

BCC
OK?

Yes

No
Received
message?

No

No

Yes

Yes

RCVE

Send DLE LAST

LAST = ACK

LAST = NAK

LAST = NAK

Full-Duplex DF1 Protocol 2-12

1770�6.5.22

The following sections illustrate basic message transmissions and
responses between a host and its module. The purpose of these
examples is to illustrate how DF1 protocol is used; therefore, the
DeviceNet message within is unimportant at this point. Chapter 4
illustrates the nested DeviceNet messages that are used to access the
module’s local objects.

Important: PCCC protocol is not illustrated in the following
figures. However, it resides in each of these local
messages (between the DF1 prefix data and the
DeviceNet message).

Normal Message Transmission

An example of a normal message transfer, shown below in Figure
2.6, illustrates a DeviceNet message wrapped in DF1 protocol.

Figure 2.6
Normal Message Transfer

xxxx

not full

OK

OK

xxxx

not full

xxxx
DLE STX xxxx DLE ETX BCC

DLE ACK

DLE STX xxxx DLE ETX BCC

DLE ACK

Source (host) Transmitter Link Receiver Sink (module)

Command

Reply

(Sometime Later ...)

In this figure:

• the transmitter sends the
message to the receiver

• the sink sends a
�not full" message

• the receiver sends the message
to the sink and sends a DLE ACK
to the transmitter

• the transmitter tells the source
that the message was delivered

• reply is successfully returned
from the network

xxxx = DeviceNet messageNote:

Host/Module Message
Transmission Examples

Full-Duplex DF1 Protocol 2-13

1770�6.5.22

When a Message Transfer Fails

Figure 2.7 illustrates what happens when the module receives
corrupted data, shown as “??.”

Figure 2.7
Message Transfer with NAK

xxxx

not full

OK

OK

xxxx
not full

xxxx
DLE STX x??x DLE ETX BCC

DLE STX xxxx DLE ETX BCC

DLE NAK

DLE ACK

DLE STX xxxx DLE ETX BCC

DLE ACK

Transmitter Link Receiver

Command

Reply

(Sometime Later ...)

In this figure:

• the transmitter sends a corrupted
message to the receiver and the
receiver responds with a DLE NAK

• the transmitter retransmits; the
transmission is successful

• reply is successfully returned from
the network

xxxx = DeviceNet messageNote:

Source (host) Sink (module)

In addition to the example above, a DLE NAK can occur if:

• a reply is corrupted

• the receiving device’s buffers are full

Both the host and module use a DLE NAK. If the module sends your
host an invalid message, your host will reply with a DLE NAK.

Full-Duplex DF1 Protocol 2-14

1770�6.5.22

When a Retransmission is Requested

In some cases, as illustrated in Figure 2.8, the host or module can
request a message retransmission.

Figure 2.8
Message Transfer with Retransmission

xxxx

not full

OK

OK

xxxx

not full

xxxx
DLE STX xxxx DLE ETX BCC

DL???CK

DLE STX xxxx DLE ETX BCC

DLE ACK

Source Transmitter Link Receiver Sink

Command

Reply

(Sometime Later ...)

DLE NAK

DLE ENQ

(Timeout)

???

(duplicate message)

DLE ACK

(Timeout)

DLE STX xxxx DLE ETX BCC

In this figure:

• Noise destroys the DLE ACK

• The transmitter times�out waiting
for the response and sends a
DLE ENQ which is also destroyed
by noise.

• because of the invalid characters,
the receiver changes its last
response to a DLE NAK

• since the DLE ACK was
destroyed, the transmitter sends
a DLE ENQ (enquiry), and the
receiver returns the DLE NAK

• the transmitter retransmits the
message and the receiver sends
an ACK

• the receiver discards the
duplicate message (if duplicate
message detection is enabled on
your module)

• reply is successfully returned
from the network

xxxx = DeviceNet messageNote:

Chapter 3

1770�6.5.22

Module Communication Over
the DF1 Link

This chapter explains each of the components needed for
communication between the host and module over the DF1
protocol link.

For information about See page

The RS�232 heartbeat 3�2

Host and module local connections 3�2

Before network communication 3�4

Communication on the DeviceNet network 3�5

Your module needs to detect the baud rate between it and the host
upon power-up or when the heartbeat between your host and module
stops. To accomplish this, your host must send the following
message until the module responds.

hexadecifmal value 10 05

symbol DLE ENQ

hexadecifmal value 10 05

symbol DLE ENQ

The module returns the following message to your host when
serial-link autobaud is complete. This message indicates to your host
that the module is ready to communicate.

hexadecifmal value 10 15

symbol DLE NAK

DeviceNET

RS-232

NETWORK
STATUS

MODULE
STATUS

DC
IN
(9V)

The Module Status Indicator flashes green
when your module is in the serial�link
autobaud detection�state and turns solid
green when the baud rate is acquired.

Chapter Contents

Module Serial�Link Autobaud

FFFFhex

Module Communication Over the DF1 Link 3-2

1770�6.5.22

Since there is no DF1-level heartbeat, the DCD signal at the
module’s RS-232 port is used to indicate that the host is active. If the
DCD is lost for 500 milliseconds or more, the module:

• drops DTR for 1 second

• disables the CAN network

• deletes all connection links

• returns to serial-link autobaud state

To communicate with the module over a predefined
local-connection, the host wraps DeviceNet protocol with DF1 and
PCCC protocol and uses the invalid CAN ID:

FFFFhex

The message’s body format is set to DeviceNet 8/8:

Class = 8 bit integer Instance ID = 8 bit integer

Layer Name Description

DF1
DLE DLE = 10hex

DF1
STX STX = 02hex

DST Destination = 0 (unused)

SRC Source = 0 (unused)

PCCC CMD
Command = 0C hex

(DeviceNet message)

STS Status = 0 (unused)

TNSW Packet Counter

Data

CAN ID
CAN Indentifier (DeviceNet

format)
Data

Data
CAN Data (DeviceNet

format, 8 bytes maximum)

DLE DLE = 10hex

DF1 ETX ETX = 03hex

BCC Block Check Character

For more information about DeviceNet protocol, refer to the
DeviceNet Specification, Volume 1.

The RS�232 Heartbeat

Host and Module Local
Connections

Module Communication Over the DF1 Link 3-3

1770�6.5.22

Accessing Local Objects

The purpose of using FFFF to address the module is to access objects
residing within the module. Each of the module-supported objects,
listed in chapter 1, have a specific function. These functions range
from maintaining the host/module local connection to facilitating
communication on the DeviceNet network. Objects make it possible
for the module to perform its duties as the host’s interface to the
network. The code used to manipulate these objects is inside the
DeviceNet message.

The example below illustrates how the host accesses local objects
within the module. In this particular example, the host is resetting the
module’s RS-232 object.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF

This ID indicates this DeviceNet
message is for the module

Indicates the beginning
of the message

Indicates the end of
the message

10 02 10 03

DST SRC CMD STS TNSW

3E00 00 0C 00 05 C8 01

8 byte maximum

symbol

hexadecimal
value

8D

5D 00

symbol

hexadecimal
value

3E

05

C8

01

hex value description

This is the node address. 3E in
decimal is 62. This value is arbitrary.

This is the service code. 05 means Reset.

This is the class code. It identifies which
object the host is trying to access. C8 is
the RS�232 object.

This value is indicating an instance of
the selected object. 01 is instance 1.

This particular DeviceNet message
is telling the module's RS�232
object, instance 1 to reset.

Module Communication Over the DF1 Link 3-4

1770�6.5.22

Inside the DeviceNet Message

When the FFFF address is used, the module reads the DeviceNet
message to follow; it does not pass the message to the network. The
following list is the structure of a DeviceNet message sent from a
host to a module.

• the module’s node address

• service-code (the command you give to the specified object)

• class-code of the object for which the service-code is sent

• the object’s instance for which the service-code is sent

• the instance’s attribute for which the service-code is sent (only
when applicable)

• the value you need to apply to the specified attribute (only when
applicable)

Important: All code in any message between the host and module
is hexadecimal, including the values within the
DeviceNet message.

The following table is a listing of hexadecimal common-service
codes that are used to manipulate your module’s objects.

Service name
Hexadecimal

service code

get_attribute_single 0E

set_attribute_single 10

reset 05

start 06

stop 07

create 08

delete 09

Before you can use the module to communicate on the network, you
must first access the appropriate objects within the module to:

• stop the module if you need to re-initialize

• configure node address and baud rate

• start the module

Stop Service

If your module has already been activated, we recommend that you
send a stop service to the module’s DeviceNet object. This makes
sure that your module is not actively receiving and sending messages
and is ready to be configured.

Before Network
Communication

Module Communication Over the DF1 Link 3-5

1770�6.5.22

Configure Node Address and Baud Rate

Before your module can communicate on a DeviceNet network, you
must configure the node address and baud rate. This is done by
sending the set_attribute_service to the module’s DeviceNet object
(Class DeviceNet, Instance 1, Attributes 1 and 2).

Important : The module uses two baud rates. The first is the rate at
which data is exchanged between it and the host; this is
where the serial-link autobaud function is applied. The
second is the rate at which data is sent to and received
from the devices on the DeviceNet network; this is
where the set_attribute_service to the DeviceNet object
is applied.

Start Service

To activate DeviceNet network communication you must send a
start service to the module’s DeviceNet object. Upon receiving this
message, the module:

• validates the node address and baud rate

• initializes and starts the CAN chip

• performs a duplicate node address check

When the Network-Access State Machine is completed the module
returns a response. The duration between sending the start service
message and receiving the start response is arbitrary; however, this
time is never less than two seconds.

For more information about the Network-Access State Machine,
refer to the DeviceNet Specification, Volume 1.

As an interface for your host, the module sends messages to and
receives messages from devices on the network. It passes messages
from your host to the network and determines which DeviceNet
messages to accept from the wire. The module also supports
unconnected messages by passing them through to the host’s
Unconnected Message Manager (UCMM).

Reference

Go to page:

 4�5

Communication On The
DeviceNet Network

Module Communication Over the DF1 Link 3-6

1770�6.5.22

Sending and Receiving Unconnected DeviceNet Messages

Before a connection has been established, a device may contact the
host through its UCMM. A DeviceNet device, when online, always
has two unconnected message ports available, one for receiving and
one for sending UCMM messages. A UCMM object resides in the
host and not in the module; therefore, any unconnected message the
module receives is passed directly to the host. It is through this
unconnected messaging that a connection is established between the
host and a DeviceNet device.

1. Device 22 needs to set up a connection
with the host (device 62). Device 22's
UCMM sends an unconnected message
(open�connection request) via the
DeviceNet network.

2. The unconnected message is accepted
through the module's UCMM
receive port.

3. The unconnected message travels
through the module, over the RS�232
serial�link, and to the host's
UCMM object.

4. The host sends a connection�request
response via the module.

5. Through the module's UCMM transmit port, the
response is sent over the network to the
requesting device.

6. Device 22 receives the open�connection
response from the host through its UCMM.

7. A connection is created. This connection will
remain as long as Device 22 and the module
are online. All consequent communication
between Device 22 and the host will occur
over this connection unless either the module
or device goes offline. If either component
goes offline , the connection must be
renegotiated through the UCMM function.

Host

Device 62

Device 22

UCMM

1770�KFD RS�232 Link

7

1 2 3
UCMM

456

Sending DeviceNet Messages

The module transmits onto the network any DeviceNet message it is
given by the host, provided the CAN ID is valid. Messages bound for
the network do not pass through screeners or any other similar
objects in the module.

Module Communication Over the DF1 Link 3-7

1770�6.5.22

Receiving Connected DeviceNet Messages

After a connection has been established, the host must create
screeners in the module. Screeners are created for every device
connection from which you need to receive messages, other than
unconnected messages. A different screener is created for each of
these device connections. Each screener is responsible for
recognizing a particular CAN ID; they pass any message with a
matching CAN ID to the host. Screeners can be created and deleted
as needed.

To create a screener, the host sends a create service message to the
module’s link object, class code = CBhex, instance 00hex. The CAN
ID that you want screened becomes the first part of the create
service. Screeners stay in place until deleted by the host using the
delete service or when the module goes offline.

Reference

Go to page:

 4�8

Chapter 4

1770�6.5.22

Link Communication Example

This chapter presents full-duplex, DF1-communication examples
between a host and module. There is an example of each major task
you perform to enable network communication via the 1770-KFD
interface module. These include:

• initializing your module

• creating screeners

• deleting screeners

This chapter’s examples were created with the following
assumptions in mind.

• The hexadecimal value, 3e (decimal value = 62) is your host’s
node address.

Important : Your host’s node address is completely arbitrary. You
can set its ID to whatever value fits your structure and
the DeviceNet network’s specifications.

• PCCC protocol, which is not included in these examples, is
present during communication between a host and module.

• The PCCC protocol packet-counter (TNSW), though not shown,
is incremented in each message.

• The DF1 block check character, though not shown as a true value
in these examples, is calculated for each message exchanged
between a host and module.

For information about See page

Initializing your module 4�2

Creating screeners 4�8

Deleting screeners 4�9

Chapter Contents

Link Communication Example 4-2

1770�6.5.22

To initialize your module, perform the processes listed below.

Important: If you are re-initializing your module, you must begin
by resetting your module. If you are initializing your
module for the first time, skip the module reset and
begin with the serial-link autobaud function.

Process Command
Hexadecimal

value

Corresponding

local object

Object's

class code

(in hex)

module reset reset 05 RS�232 C8

serial�link

autobaud
DLE ENQ 10 05 N/A N/A

stop service stop 07 DeviceNet 03

set node

address

set_attribute_

single
10 DeviceNet 03

set baud rate
set_attribute_

single
10 DeviceNet 03

start service start 06 DeviceNet 03

Module Reset

Since you will be configuring your module, you need to clear the
module by resetting it. To reset your module, send the reset
command to the module’s RS-232 object, instance 1.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

reset

RS�23 object

instance 1

3E

05

C8

01

message sent from your host to your module over the RS�232 serial�link

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

reset response

3E

85

message sent from your module to your host over the RS�232 serial�link

To re�initialize your
module, begin here.

If you are initializing
your module for the
first time, begin here.

Initializing Your Module

This step is for
re�initialization only.

Link Communication Example 4-3

1770�6.5.22

Serial�Link Autobaud

So that your host and module can communicate properly, the module
must set its serial-link baud rate to match your host. To accomplish
this, repeatedly send a response-retransmission request (10 05hex) to
the module. You will know the module has acquired the proper baud
rate when it returns a message non-acknowledgment (10 15hex) and
its module-status indicator is solid green.

ETXDLE ENQ PCCC data CAN ID DeviceNet data DLE BCC

10 05

symbol

hexadecimal
value

Only these DF1 hex
values are needed
to initiate the
serial�link autobaud
function.

These portions of a message are not
needed for the serial�link autobaud
function. No object instance
is accessed.

DLE NAK

10 15

symbol

hexadecimal
value

message sent from your host to your module over the RS�232 serial�link

message sent from your module to your host over the RS�232 serial�link

Important: After transmitting the 10 05hex, your host needs to wait
a reasonable amount of time for the module to respond
before your host retransmits this message. In a
“worst-case-scenario,” this amount of time could range
from 50 to 100 milliseconds.

Link Communication Example 4-4

1770�6.5.22

Stop Service

When you send a stop message to your module, the module ceases
all network activities; it prepares the module for configuration. To
stop your module, send a stop message to its DeviceNet object’s
instance 1.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

stop

DeviceNet object

instance 1

3E

07

03

01

message sent from your host to your module over the RS�232 serial�link

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

stop response

3E

87

message sent from your module to your host over the RS�232 serial�link

Link Communication Example 4-5

1770�6.5.22

Set Node Address

Since the module is one part of the overall device (the host and
module together constitute one device) you set the module’s node
address to match your host. To set your module’s node address, send
a set_attribute_single with the ID value to the DeviceNet object’s
instance 1, attribute 1.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

set_attribute_single

DeviceNet object

instance 1

3E

10

03

01

01

3E

message sent from your host to your module over the RS�232 serial�link

attribute 1

62

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

set_attribute_single
response

3E

90

message sent from your module to your host over the RS�232 serial�link

Link Communication Example 4-6

1770�6.5.22

Set Baud Rate

You set the baud rate at which you would like to communicate on the
DeviceNet network via the DeviceNet object. To set the baud rate at
which your module will communicate on the network, send a
set_attribute_single with the baud rate value to the DeviceNet
object’s instance 1, attribute 2.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

set_attribute_single

DeviceNet object

instance 1

3E

10

03

01

02

00

message sent from your host to your module over the RS�232 serial�link

attribute 2

baud rateThere are three allowable baud
rates that are represented by
hexadecimal values.

• 00hex = 125 kbps

• 01hex = 250 kbps

• 02hex = 500 kbps

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

set_attribute_single
response

3E

90

message sent from your module to your host over the RS�232 serial�link

Link Communication Example 4-7

1770�6.5.22

Start Service

The final step of initialization is to start the module. You start the
module by sending a start service-code (06hex) to its DeviceNet
object’s instance 1.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

start

DeviceNet object

instance 1

3E

06

03

01

message sent from your host to your module over the RS�232 serial�link

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

start response

3E

86

message sent from your module to your host over the RS�232 serial�link

Link Communication Example 4-8

1770�6.5.22

Screeners facilitate connected message transfers between your host
and devices on the network. To communicate with a network device
via connected messages, you must create a screener for the device
within the Link object. This is accomplished by sending a create
service-code to the Link class. In this example, we are creating a
screener for a network device with the node address 22.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

create

Link object

instance 0

3E

08

CB

00

0616

message sent from your host to your module over the RS�232 serial�link

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

create response

3E

88

0100

message sent from your module to your host over the RS�232 serial�link

Group 3, message ID 0
from device 16hex.
(16hex = 22 dec)

the created link object's
instance ID

Creating Screeners

Link Communication Example 4-9

1770�6.5.22

You can delete screeners for devices with which you no longer need
to communicate via connected messages. To delete a screener, send a
delete service-code to the Link object. In this example, we are
deleting the screener we created in the previous example.

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

delete

Link object

instance 1

3E

09

CB

01

16

message sent from your host to your module over the RS�232 serial�link

node address
 (16hex = 22dec)

DLE STX PCCC data CAN ID DeviceNet data DLE ETX BCC

FFFF10 02 10 03

8 byte maximum

symbol

hexadecimal
value

XXnode address 62

delete response

3E

09

message sent from your module to your host over the RS�232 serial�link

Deleting Screeners

Appendix A

1770�6.5.22

Module Supported Objects

This appendix describes each module-supported object, covering
only those attributes and services specific to the module.

Important : Except for the Link object, the module does not support
class-level attributes or services of its objects.

For information about See page

1770�KFD DF1 object A�3

Identity object A�4

Link object A�6

Power Management object A�7

RS�232 object A�7

Because this appendix is specific to the 1770-KFD interface-module,
much detail on the objects described here is omitted. For more
information about object definitions, refer to the DeviceNet
Specification, Volumes I and II.

The DeviceNet object provides the configuration and status for a
physical attachment to the DeviceNet network. Each physical
network-attachment in a device (there can be more than one per
device) has one and only one DeviceNet object. This is a required
object for all DeviceNet devices.

Instance Services

Codehex Name Description

0E get_attribute_single
used to read a DeviceNet Object

attribute value

10 set_attribute_single
used to modify a DeviceNet Object

attribute value

Instance Attributes

ID
Access

Rule
Name Data Type Description Value

1 get/set MAC ID USINT
node

address
range 0�63

2 get/set baud rate USINT baud rate range 0�2

Class ID Code: 03hex

Appendix Contents

DeviceNet Object

Module Supported Objects A-2

1770�6.5.22

MAC ID:

The host and the module together constitute one device. The MAC
ID for this device is held in the module’s DeviceNet object.

To modify the MAC ID, you must delete all connection objects and
re-execute the Network Access State Machine. To accomplish this,
you must:

1. Send a stop service.

2. Reconfigure.

3. Send a start service (restart).

Baud Rate:

The baud rate attribute indicates the selected rate as listed below:

Value Meaning

00 125 kbps

01 250 kbps

02 500 kbps

To modify the baud rate you must delete all connection objects and
re-execute the Network Access State Machine. To accomplish this,
you must:

1. Send a stop service.

2. Reconfigure.

3. Send a start service (restart).

Module Supported Objects A-3

1770�6.5.22

The host uses the module’s DF1 object to track communication on
the RS-232 serial-link. It logs all DF1 communication on this link
and can be accessed by sending a get_attribute_single. Different
bytes carry specific counters. These bytes are what the host reads to
obtain the desired data, such as how many ACKs were received.

Instance Services

Codehex Name Description

0E get_attribute_single retrieves information stored in a DF1 counter

Instance Attributes

ID
Access

Rule
Name Data Type Description Value

5 get
DF1 error

counters
USINT[34]

tracks serial� link

communication
see Table A.A

Table A.A
Module�Specific Counter Bytes

Counter byte Counts

35, 36 number of times the node attempted to send a message

37, 38
messages that were successfully transmitted

and ACKed

39, 40 ACKs that were received

42 NAKs received

45 ENQs sent

46 messages that could not be successfully sent

48, 49 messages received

50, 51 ACKs sent

52 NAKs sent

53 ENQs received

55 STXs received

57 messages that were aborted by receipt of DLE ENQ

58
messages that were aborted by the receipt of an

unexpected control code other than DLE ENQ

60 times DLE NAK was sent because there was no buffer

67 times that DCD was lost

Class ID Code: C9hex

1770�KFD DF1 Object

Module Supported Objects A-4

1770�6.5.22

The identity object provides general information about its device.
This object must be present in all DeviceNet products.

Class Services

Codehex Name Description

0E get_attribute_single
returns the contents of the specified

attribute

05 reset invokes the Reset service for the device.

Instance Attributes

ID
Access

Rule
 Name Data Type Description

1 get vendor UINT
identification of each

vendor by number

2 get device type UINT
indication of general type

of product

3 get product code UINT

identification of a particular

product of an

individual vendor

4 get revision STRUCT of
revision of the item the

major revision USINT

revision of the item the

identity object represents

minor revision USINT

5 get status WORD summary status of device

6 get serial number UDINT serial number of device

7 get product name
SHORT

STRING

human readable

identification

8 get state USINT present state of the device

Class Code: 01hex

Identity Object

Module Supported Objects A-5

1770�6.5.22

Vendor

If the returned attribute equals zero, it means “Unknown.”

Device Type

Every DeviceNet vendor uses the same list of device types to:

• register assembly-object instance definitions

• provide a scope for the product-code numbers

If the returned attribute equals zero, it means “Generic Device.” An
explanation of the generic device must be supplied in the
vendor documentation.

For a listing of the presently defined Device Types, refer to the
DeviceNet Specification, Volume II.

Product Code

The product code identifies a product among a particular device
type. Each vendor assigns this code to each of its products. The
product code should map to a catalog/bulletin number.

The value zero is reserved to mean “Unassigned.” If the returned
attribute equals zero, it means “Generic Vendor Product.”

Revision

The revision attribute, which consists of major and minor revisions,
identifies the revision of the item this object represents.

If the returned attribute equals zero, it means “Unknown.”

The major and minor attributes, referred to above, are sometimes
called a series and revision, respectively. The major-revision
attribute is limited to seven bits. The eighth bit is reserved by the
DeviceNet network and must have a default value of zero.

Status

This attribute represents the current status of the entire device. Its
value changes as the state of the device changes.

Serial Number

This attribute is a number used in conjunction with the vendor
number to form a unique identifier for each device on a
DeviceNet. network

State

This attribute is an indication of the present state of the device.

Module Supported Objects A-6

1770�6.5.22

You create CAN ID screeners in the link object. These screeners
make it possible for the module to receive messages from selected
network devices and pass that message on to your host. Screeners are
similar to a list of passwords. When the module detects a message on
the network, it checks its CAN ID and compares it to its screeners in
the link object. If the message has a matching password (CAN ID)
then it is accepted and passed on the host.

Class Services

Codehex Name Description

08 create configures ID screener

09 delete deletes all screeners

Instance Services

Codehex Name Description

09 delete
deletes a specified,

single sreener

Instance Attributes

ID
Access

Rule
Name Data Type Description Value

1 get/set screened ID WORD
sets CAN ID to

screen on
11 bit identifier

There can be a maximum of 128 screeners created.

Class Code: CBhex

Link Object

Module Supported Objects A-7

1770�6.5.22

The power management object holds information about the module’s
network power supplying function. In addition, it facilitates
terminating resistor configuration.

Instance Services

Codehex Name Description

0E get_attribute_single
used to access data indicating status of the

power settings

10 set_attribute_single
modifies the attribute responsible for the

terminating resistor

Instance Attributes

ID
Access

Rule
Name Data type Description

1 get supply network power USINT

indicates whether or not the

module is supply network

power

2 get network power USINT
indicates whether or not

network power is present

3 get/set terminating resistor USINT

indicates if the terminating

resistor is on. Toggles the

resistor on or off

Values for

Attribute 1
Definition

0 network

1 power supply

2 batteries

The RS-232 object maintains the module’s serial-link autobaud
function before and after acquiring that rate. However, it only
maintains the rate of data exchange between the host and module. Do
not confuse this object’s function with the DeviceNet object. The
DeviceNet object acquires and maintains the DeviceNet network
baud rate. In addition, you access the RS-232 object before
initializing the module; you send a reset command to this object to
clear the module before configuring it, which includes “serial-link
autobauding.”

Instance Services

Codehex Name Description

05 reset
clears the instance in preparation for the

serial�link autobaud function

Class Code: CAhex

Class Code: C8hex

Power Management Object

RS�232 Object

Appendix B

1770�6.5.22

Troubleshooting

This appendix lists problems you may encounter when working with
your 1770-KFD module on the link layer. It covers the most
commonly encountered errors.

Status-indicator lights on the module can point to several types of
errors. The lights may appear in a number of different states to
indicate different problems or processes.

RS�232 Status Indicator

condition status

off no activity, link OK

flickering green activity, link OK

solid red link failed (critical fault)

flashing red link failed (non�critical fault)

Network Status Indicator

condition status

off offline

flashing green online

solid red link failed (critical fault)

solid green online, communicating

Module Status Indicator

condition status

off no power

solid green device OK

flashing green not configured

solid red critical fault

flashing red non�critical fault

Appendix Contents

Network Status
indicator

Module Status
indicator

RS�232 Status
indicator

Troubleshooting B-2

1770�6.5.22

The following table lists common errors encountered when
communicating with your module on the link layer. The first column
in each category describes a “symptom” that is then followed by a
list of status-indicator states, probable causes, and recommendations
on how to correct the error.

Important: Due to the wide range of hardware and software
combinations used by developers, this troubleshooting
section cannot be a comprehensive list of errors.
However, we recommend that when you encounter an
error, check here before calling technical support.

Error Category Where To Look Possible Cause Recommendation

RS�232 status indicator

is flashing red.

An incorrect baud rate or

parity error has

been detected.

Be sure that your PC's baud

rate is module supported (see

page 1�2). Be sure there is no

parity used and that the

character size is 8 bits.

Module status indicator

is flashing green.

No baud rate has

been detected.

Initiate autobaud.

No communication occurring

Module status indicator

is solid red.

The module has an

unrecoverable fault.

Replace your

1770�KFD module.
No communication occurring

between your PC and the

module.

the RS�232 cable � Cable is not connected

properly to the PC

or module.

� Cable does not have the

proper internal�wire

cross�over.

� Be sure to securely attach

the cable to the PC and

module's respective

RS�232 serial ports.

� Replace cable with an

Allen�Bradley approved

RS�232 serial cable.

your software Your software is not asserting

DTR (data�terminal�ready).

Refer to your particular

software application's user

manual or programming

instruction guide.

Troubleshooting the Module

Troubleshooting B-3

1770�6.5.22

Error Category RecommendationPossible CauseWhere To Look

No communication occurring

between the module and the

DeviceNet network.

Network status indicator

is off.

The module is offline because

its DeviceNet cable may not

be properly connected

� Activate your module on

the DeviceNet network by

sending the start service.

� Check the network and its

devices to be sure they

have been

properly installed.

� Be sure the DeviceNet

cable connecting the

module to the network is

properly installed, including

the 5�position connector at

the module's

DeviceNet port.DeviceNet network.

Network status indicator

is flashing green.

The module has not been

configured for connected

messages (no screeners set

up to receive connected

DeviceNet messages).

Create screeners within the

module's link object

(see page 4�8).

Network status indicator

is solid red.

The module has detected an

error that is prohibiting

communication on the link.

This could include detection

of a duplicate node address

or network configuration error.

Be sure that all of your

devices are set to the correct

baud rate. In addition, be sure

that no two nodes are set to

the same node address

(MAC ID).

94hex response after

you send start service.

The module is set at an

incorrect node address

(MAC ID).

Access the DeviceNet object

to set the appropriate node

address for the module

(see page 4�5).

Error response received from

start service (06hex). Note

that a good response is 86hex

while an error response

The module is set at an

incorrect network baud rate.

Access the DeviceNet object

to set the appropriate baud

rate for the module

(see page 4�6).
while an error response

is 94hex. There is no response to

the start service.

The module is not properly

connected to the network via

the DeviceNet cable.

Be sure the DeviceNet cable

connecting the module to the

network is properly installed,

including the 5�position

connector at the module's

DeviceNet port.

Not receiving connected

DeviceNet network messages

(this excludes any

unconnected messages).

Link object The module has not been

configured for connected

messages (no screeners set

up to receive connected

DeviceNet messages).

Create screeners for each

CAN ID from which you want

to receive messages

(see page 4�8)

Create link failed
The number of

links created

There can only be a

maximum of 128 links.

Delete unnecessary links.

Numbers

1770�KFD. See module

A

ACK, 2�2

ANSI x3.16, 2�2

ANSI x3.28, 1�4, 2�1

autobaud, 3�1, 4�2, 4�3

B

baud rate, 4�2, 4�6
configure, 3�5

baud rates, 1�2

BCC, 2�3
See also block check character

block check character, 1�5, 2�2, 2�3
calculating, 2�3

C

CAN ID, 1�5, 3�2, 3�6, 3�7
link object, A�6

CCITT V.4, 2�2

character, transmission, 2�2

CMD, 1�5, 2�3

communication
DeviceNet, 3�5
example (DF1 link�layer), 4�1
local, 3�2

computer
See also host
mode of transmission, 2�2

connections, point�to�point, 2�1

control, symbols, 2�2

create, service, 3�4
message, 3�7

D

data
size, 2�2
symbols, 2�2

DCD, 3�2

delete, service, 3�4
message, 3�7

DeviceNet
message, 3�4
object, 1�6

baud rate, A�2
definition for module, A�1
MAC ID (node address), A�2
set_attribute_single (baud rate), 4�6
set�attribute�single (node address),

4�5
start service, 4�7
stop service, 4�4

protocol, 1�3, 1�4
receiving connected messages, 3�7
sending connected messages, 3�6
specification Volume I & II, A�1

DF1, 1�5
about, 2�1
character transmission, 2�2
communication example, 4�1
environment definition, 2�5
full�duplex message packet, 2�3
full�duplex protocol, 1�4, 2�1
how the receiver operates, 2�8
how the transmitter operates, 2�6
message, format, 3�3
message transmission examples, 2�12
module communication, 3�1
object, 1�6

definition for module, A�3
protocol, 1�3
response symbol, 2�6
timeout, 2�6

DLE, 1�5, 2�2, 2�3
ENQ, 4�2

DST, 1�5, 2�3

DTE controlled answer, 1�2

DTR, 3�2

E

ENQ, 2�2
DLE ENQ, 4�2

errors, general, B�2

ETX, 1�5, 2�2, 2�3

Index

 IndexI–2

F

FFFF (hex), 3�2

full duplex
DF1 protocol, 2�1
message packet, 2�3

G

get_attribute_single
DeviceNet object, A�1
service, 3�4

H

hexadecimal service codes, 3�4

host, communication with module, 2�2,
3�2

message transmission examples, 2�12

I

identity, object
definition for module, A�4
device type, A�5
product code, A�5
revision, A�5
serial number, A�5
state, A�5
status, A�5
vendor, A�5

initializing your module, 4�2

ISO 1177, 2�2

L

link
communication example, 4�1
link�layer protocol, 2�1
link�level communication, 1�3
object, 1�6, 3�7

creating screeners, 4�8
definition for module, A�6
deleting screeners, 4�9

protocol, 2�2

local communication, 3�2

local objects, accessing, 3�3

M

MAC ID (node address), A�2

major (series), identity object, A�5

message
create service, 3�7
delete service, 3�7
DeviceNet, 3�4
failing, 2�13
format, 3�2, 3�3
full�duplex packet, 2�3
normal transmission, 2�12
packet fields, 2�3
problems in receiving, 2�9
receiving connected messages, 3�7
retransmission request, 2�14
sending connected messages, 3�6
sending/receiving via UCMM, 3�6
sink, 2�5
source, 2�5
transmission examples, 2�12
transmitting, 2�6
type, 2�2

message format, module, 1�5

minor (revision), identity object, A�5

modem, 1�2
auto�answer, 1�2
DTE controlled answer, 1�2
initializing, 4�2

module
1770�KFD protocol, 1�5
about, 1�1
autobaud, 3�1, 4�2, 4�3
basics, 1�1
baud rate, 4�2, 4�6
baud rates, 1�2
communication over the DF1 link, 3�1
communication with host, 2�2
errors, general, B�2
message, format, 1�5
node address, 4�2, 4�5
physical connections, 1�1

point�to�point, 1�1
remote via modem, 1�2

reset, 4�2
start service, 4�7
status indicator, 3�1

state definitions, B�1
status indicators, 1�2
stop service, 4�4
supported objects, 1�6, A�1

module status indicator, 1�2
state definitions, B�1

N

NAK, 2�2, 2�3

 Index I–3

network status indicator, 1�2
state definitions, B�1

node address, 4�5
configure, 3�5
set, 4�2

O

object
accessing local, 3�3
DeviceNet, 1�6

definition for module, A�1
DF1, 1�6

definition for module, A�3
identity, A�5

definition for module, A�4
link, 1�6, 3�7

definition for module, A�6
power management, 1�6

definition for module, A�7
RS�232, 1�6

definition for module, A�7

objects, module supported, 1�6, A�1

P

parity, 2�2

PCCC, 1�5
protocol, 1�3, 1�4

physical circuits, 2�5

physical connections, 1�1

point�to�point connection, 1�1, 2�1

power management, object, 1�6
definition for module, A�7

protocol layers, 1�3

R

receiver, 2�5
how it operates, 2�8
logic flowchart, 2�11
problems in receiving messages, 2�9
structured English procedure, 2�10

reset, 4�2
service, 3�4

response symbol, 2�6

RS�232
See also serial connection
heartbeat, 3�2
object, 1�6

definition for module, A�7
reset, 4�2

RS�232 serial cable, 1�1

RS�232 status indicator, 1�2
state definitions, B�1

S

screeners
creating, 4�8
deleting, 4�9
link object, A�6

serial connection, 1�3

services, 3�4

set_attribute_single
DeviceNet object, A�1
service, 3�4

set�attribute_single, 4�2
baud rate, 4�6

set�attribute�single, node address, 4�5

SRC, 1�5, 2�3

start, service, 3�4, 3�5, 4�2, 4�7

status indicator, module, 3�1

status indicators, 1�2
state definitions, B�1

stop, service, 3�4, 4�2, 4�4

stop bit, 2�2

STS, 1�5, 2�3

STX, 1�5, 2�2, 2�3

T

timeout, 2�6

TNSW, 1�5, 2�3

transmitter, 2�5
how it operates, 2�6
logic flowchart, 2�8
structured English procedure, 2�7

troubleshooting, B�1

two�way simultaneous operation, 2�5

U

unconnected message manager,
sending/receiving messages, 3�6

unconnected message manager (UCMM),
3�5

V

validity check, 2�2

