PHOTOELECTRIC SAFETY BARRIERS

# ARGOLUX AS SERIES

INSTALLATION AND MAINTENANCE MANUAL

# TABLE OF CONTENTS

| GENERAL OBSERVATIONS                       | pag. | 2  |
|--------------------------------------------|------|----|
| APPLICATIONS                               | pag. | 2  |
| DESIGN AND OPERATION                       | pag. | 3  |
| TEST SEQUENCE AND CONTROLS                 | pag. | 7  |
| CONTACTS STATUS                            | pag. | 8  |
| LED STATUS INDICATORS                      | pag. | 9  |
| TECHNICAL FEATURES                         | pag. | 10 |
| DIMENSIONS                                 | pag. | 12 |
| INSTALLATION                               | pag. | 15 |
| POSITIONING AND SAFETY DISTANCES           | pag. | 17 |
| GROUPING OF SEVERAL SETS                   | pag. | 21 |
| REFLECTING SURFACES                        | pag. | 22 |
| DEFLECTION MIRRORS                         | pag. | 24 |
| ELECTRICAL CONNECTION                      | pag. | 25 |
| MOUNTING AND OPTICAL ALIGNMENT             | pag. | 28 |
| INSPECTION AND MAINTENANCE                 | pag. | 29 |
| TROUBLE SHOOTING                           | pag. | 30 |
| ORDERING CODE, ACCESSORIES AND SPARE PARTS | pag. | 32 |
| WARRANTY                                   | pag. | 34 |

# 

# GENERAL OBSERVATIONS

The ARGOLUX AS curtain is a multibeam optoelectronic protective device designed to secure operators working on dangerous machines in an industrial environment.

The ARGOLUX AS system is made up of an emitter, a receiver and a separate control unit. The 3 units are combined to provide a type 2 fail-safe system as defined by the EN 61496-1 and prEN 61496-2 («Safety of machinery - Electro-sensitive protective system»).

When an opaque object (such as the operator's hand or arm) enters the dangerous areas and therefore goes through the detection field between the emitter and the receiver, the control unit de-energizes its output relays.

The result is the immediate stoppage of the dangerous movement if the control unit is correctly connected to the machine control circuitry.

To fulfil correctly its safety function, the safety system must be correctly interfaced to the machine circuitry and correctly positioned regarding the danger zone to reduce or cancel risk.

### APPLICATIONS

The ARGOLUX AS curtain may be used on industrial machines for which the risk assessment allows the use of a type 2 electrosensitive protective system.

The detection of an object obscuring any beam in the curtain de-energizes the output circuit of the curtain and the moving body of the machine comes to rest.



The following are examples of machines where the ARGOLUX AS may be used:

- Machinery for product handling such as conveyors, palletizing, collating machines;
- Packaging and wrapping devices;
- Automated assembly lines;
- Automated warehousing.

To control access all around a machine, the ARGOLUX AS curtain can be used with deflection mirrors to build a perimetric protection surrounding the dangerous area.



For applications in the food and beverage industry consult the factory to check the compliance with the materials and chemical agents involved.



The safeguarding function of optoelectronic protective devices is not efficient if:

The moving body of the machine cannot be electrically controlled and if its movement cannot be stopped at any time during the machine cycle.





If necessary, in the case of technical safety questions, consult the safety authorities of your country or the competent industry association.

### DESIGN AND OPERATION

#### Sensing function.

The emitter is made up of a row of infrared light emitting diodes and lenses. Each diode successively emits an infrared beam with a scanning frequency of about 15kHz.

The receiver sensors catch the beams and an invisible protection field is created between the emitter and the receiver units.

The synchronisation between the emitting diodes and the receiver sensors is provided by an extra beam emitted by the receiver unit towards the emitter unit. This synchronisation beam delimits one side of the detection zone (see figure 1).



Fig. 1 The synchronisation beam is part of the detection zone.

When an opaque object with a diameter greater or equal to the resolution of the system interrupts one or several beams (figure 2), the receiver output provides an alarm signal to command the control unit to de-energize the output relays.





The resolution is always the same in the protection zone, whatever the scanning range may be since it only depends on the lens diameter and the lens pitch.

# <u> EREER</u>



Fig. 3 Position and dimensions of the detection zone and the protection zone.

# The presence in the protection zone (figure 3) of an object greater or equal to the resolution of the curtain de-energizes the output relays.

Two different resolutions are available (Ø35mm or Ø55mm) and the following table shows the values of the detection and protection heights.

| MODELS  | DETECTION ZONE<br>HEIGHT | PROTECTION ZONE<br>HEIGHT | С  | R  |
|---------|--------------------------|---------------------------|----|----|
| AS 203  | 185                      | 230                       | 65 | 35 |
| AS 405  | 255                      | 440                       | 45 | 55 |
| AS 403  | 555                      | 400                       | 65 | 35 |
| AS 605  | 525                      | 610                       | 45 | 55 |
| AS 603  | 525                      | 570                       | 65 | 35 |
| AS 705  | 700                      | 785                       | 45 | 55 |
| AS 703  | 700                      | 745                       | 65 | 35 |
| AS 905  | 870                      | 955                       | 45 | 55 |
| AS 903  | 070                      | 915                       | 65 | 35 |
| AS 1105 | 1045                     | 1130                      | 45 | 55 |
| AS 1103 | 1043                     | 1090                      | 65 | 35 |
| AS 1205 | 1215                     | 1300                      | 45 | 55 |
| AS 1203 | 1215                     | 1260                      | 65 | 35 |
| AS 1405 | 1390                     | 1475                      | 45 | 55 |
| AS 1403 | 1370                     | 1435                      | 65 | 35 |
| AS 1605 | 1560                     | 1645                      | 45 | 55 |
| AS 1603 | 1500                     | 1605                      | 65 | 35 |

Dimensions in mm

Argolux AS light curtain is available also in the MULTIBEAM configuration. From the optical point of view, a beam's pitch of 172mm is the characteristic of these seven models.



Due to the particular configuration of the beams (figure 4) the Argolux AS MULTIBEAM models shall be used only to detect intrusion of the whole body of a person and not parts of the body (hands, legs, ...).



Fig. 4 MULTIBEAM Models: beams configuration.

See the following table for the MULTIBEAM optic characteristics.

| Model           | AS | 418 | 618 | 718 | 918 | 1118 | 1218 | 1418 | 1618 |
|-----------------|----|-----|-----|-----|-----|------|------|------|------|
| Number of beams |    | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   |
| Lens pitch      | mm | 172 |     |     |     |      |      |      |      |

# TEST SEQUENCE AND CONTROLS

### Optical scanning circuitry.

The scanning circuitry of ARGOLUX AS safety barrier is based upon a self-checking principle which permanently controls its correct operation. Particularly, the system controls the multiplex signal on the emitter side, and measures the IR light pulse period emitted for each beam of the curtain.

The reversed operations are carried out on the receiver side where the system controls the demultiplex signals and recognize the infrared light pulse thanks to the measurement of the caught light period.

An accurate synchronisation enables this identification and avoids taking into account possible infrared disturbances.

If an unwanted condition occurs during the IR light beam transmission (an object is in the detection field or a failure appears), the receiver sends a command signal to the control unit which de-energizes its relays and remains in the alarm condition until the fault condition is removed.

### Output circuitry.

The control unit AU S3 controls the correct operation of the both emitter and the receiver units thanks to its electrical connection with the receiver ASR. The receiver provides the control unit with a signal through its unique relay output. As mentioned in the EN 61496-1 norm, the test facility provided with type 2 optoelectronic protective devices is partly designed to check the correct operation of this relay output.

Other operations are checked during the test to ensure the integrity of the system:

- The correct interlinking of the test sequence and the effective reset of the system (test command);
- The reaction time of the two inner relays A and B (safety relays with guided contacts) and the reaction time of the two external relays K1 and K2, if auxiliary contacts of K1 and K2 are connected to terminals 5 and 6 (use only safety relays with guided contacts);
- The inner command of A and B relays. A possible failure of one component of the output circuitry can only be detected during the test phase, and therefore the control unit de-energizes its relays only when the next test is applied. This is also true for external relays K1 and K2 by means of the feedback control (see below).

### Test input.

The ARGOLUX AS curtain is a type 2 opto-electronic protective device designed according to the EN 61496-1 and prEN 61496-2 European Norm. Its safeguarding function is based upon a periodic performance test initiated by the machine.

# <u> EREER</u>

The control unit displays a test input which must be used to generate a test sequence before each reset of the safety system or before a machine cycle if necessary.

European regulations enforce the test performance before the effective reset of the system, at power up and after any intrusion into the detection field.

The test command is activated by closing a contact between terminals 15 and 16 during 10ms at least. The test is then performed during 100ms.

If a failure is detected, the reset of the system is impossible and no machine cycle can be initiated. If no a failure is detected, the control unit energizes its relays A and B, which is the condition to initiate a new machine cycle.

It is possible to generate a test sequence at any moment by closing a contact between terminals 15 and 16.

The first step consists in controlling the correct operation of the scanning circuitry.

The system checks that the ASR receiver output relay goes to the OFF state when the detection field is broken. This detection is electronically simulated.

Then, the next step consists in controlling the AU S3 output relay. The ON and OFF reaction times of both relays are measured and compared.

During the 100 ms test period, the outputs remain open (contacts between terminals 8-13 and 9-12 remain open).

The test sequence can be generated at power up, after any intrusion into the detection field and at any other moment if the detection field is clear.

 $\bigcirc$  The test is only allowed when the detection field is clear.

### **CONTACTS STATUS** (*Ref.: connection diagram page 27*)

|                           |                        |       |       |                  | status                           |                              |                                  |                              |  |  |  |
|---------------------------|------------------------|-------|-------|------------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--|--|--|
|                           |                        | GUARD | CLEAR | CLEAR BREAK FAIL |                                  | FAIL (FAIL K1-K2)            |                                  |                              |  |  |  |
| Output of the receiver    | he<br><sup>-</sup> ASR |       |       |                  | Sensing field<br>not interrupted | Sensing field<br>interrupted | Sensing field<br>not interrupted | Sensing field<br>interrupted |  |  |  |
|                           | / 10/11                |       |       |                  |                                  |                              |                                  |                              |  |  |  |
| Output of                 | 8-13                   |       |       |                  |                                  |                              |                                  |                              |  |  |  |
| the control<br>unit AU S3 | 9-12                   |       |       |                  |                                  |                              |                                  |                              |  |  |  |
|                           | 10-11                  |       |       |                  | ۲                                | _                            |                                  |                              |  |  |  |
| Relay                     | K1-1                   |       |       |                  | <u> </u>                         |                              |                                  |                              |  |  |  |
| К1                        | K1-2                   |       |       |                  |                                  |                              |                                  |                              |  |  |  |
| Relay                     | K2-1                   |       |       |                  |                                  |                              |                                  |                              |  |  |  |
| K2                        | K2-2                   |       |       |                  | <u> </u>                         |                              |                                  |                              |  |  |  |

# 

# LED STATUS INDICATORS

| UNIT            | LED N° | COLOUR               | STATE                                                                          | INDICATIONS                                                            | AU S3 STATUS              |
|-----------------|--------|----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|
|                 | 1      | Green                | On                                                                             | Reception of the synchronisation beam                                  | GUARD - CLEAR - BREAK (*) |
| ITTER<br>ASE    | 2      | Yellow               | On                                                                             | Misalignment of the synchronisation beam                               | BREAK (*)                 |
| ₩<br>EM         | 2      | Yellow               | Alternately                                                                    | Failure on the emitter unit                                            | BRFAK (*)                 |
|                 | 3      | Red                  | flickering                                                                     |                                                                        |                           |
|                 | 4      | Green                | On                                                                             | Protection field is clear,<br>output relay of AU S3 are energized      | GUARD (*)                 |
| VER             | 5      | Yellow               | Yellow On Protection field is clear,<br>output relay of AU S3 are de-energized |                                                                        | CLEAR (*)                 |
| RECEIV          | 6      | Red On P<br>output r |                                                                                | Protection field is entered,<br>output relay of AU S3 are de-energized | BREAK (*)                 |
|                 | 5      | Yellow               | Alternately                                                                    | Failure on the receiver unit                                           | BRFAK (*)                 |
|                 | 6      | Red                  | flickering                                                                     |                                                                        |                           |
|                 | 7      | Green                | On                                                                             | Protection field is clear,<br>output relay of AU S3 are energized      | GUARD                     |
| ΠT              | 8      | Yellow               | On                                                                             | Protection field is clear,<br>output relay of AU S3 are de-energized   | CLEAR                     |
| rrol u<br>Au S3 | 9      | Red                  | On                                                                             | Protection field is entered,<br>output relay of AU S3 are de-energized | BREAK                     |
| CONI            | 9      | Red                  | Flickering                                                                     | Failure on the control unit output relay of AU S3 are de-energized     | FAIL                      |
|                 | 9      | Red                  | Flickering                                                                     | Failure on the external relays K1 and K2                               | FAIL                      |
|                 | 10     | Red                  | . noixei ing                                                                   | output relay of AU S3 are de-energized                                 | (FAIL K1-K2)              |

(\*) With control unit AU S3 correctly operating.





Fig. 5 Led status indicators on emitter and receiver.

4



Fig. 6 Led status indicators on control unit.

# TECHNICAL FEATURES

### Emitter and receiver with a ø35mm resolution.

| Model                        |          | AS              | 203      | 403      | 603   | 703       | 903      | 1103      | 1203    | 1403 | 1603 |
|------------------------------|----------|-----------------|----------|----------|-------|-----------|----------|-----------|---------|------|------|
| Protection heights           | mm       | 230             | 400      | 570      | 745   | 915       | 1090     | 1260      | 1435    | 1605 |      |
| Number of beams              |          |                 | 9        | 17       | 25    | 33        | 41       | 49        | 57      | 65   | 73   |
| Resolution                   |          | mm 35           |          |          |       |           | 35       |           |         |      |      |
| Lens pitch                   |          | mm              | 21,5     |          |       |           |          |           |         |      |      |
| Lens diameter                |          | mm              | 12       |          |       |           |          |           |         |      |      |
| Scanning range               |          | m               | m 0 ÷ 12 |          |       |           |          |           |         |      |      |
| Ambient light imm            | unity    | lx > 50.000     |          |          |       |           |          |           |         |      |      |
| Response time ms             |          |                 | 13       | 13 14 15 |       |           | 1        | 16 17     |         |      |      |
| Power supply                 |          | V <sub>dc</sub> | 24 ± 20% |          |       |           |          |           |         |      |      |
| Power consump-               | Emitter  |                 | 4,2      |          |       |           |          |           |         |      |      |
| tion<br>at 24V <sub>dc</sub> | Receiver | VV              | 3,3      | 4,6      | 6     | 7,4       | 8,8      | 10,1      | 11,5    | 12,9 | 14,3 |
| Operating temperating        | ature    | °C              |          |          | 0 ÷ 5 | 5 (withou | t conden | sation ar | nd ice) |      |      |
| Sealing                      |          |                 |          |          |       |           | IP 65    |           |         |      |      |
|                              | Width    |                 |          |          |       |           | 50       |           |         |      |      |
| -<br>Dimensions              | Depth    | mm              |          |          |       |           | 70       |           |         |      |      |
|                              | Height   |                 | 360      | 530      | 705   | 875       | 1050     | 1220      | 1395    | 1565 | 1735 |

# Emitter and receiver with a ø55mm resolution.

| Model                        |                     | AS              | 405                                   | 605 | 705      | 905   | 1105 | 1205 | 1405 | 1605 |
|------------------------------|---------------------|-----------------|---------------------------------------|-----|----------|-------|------|------|------|------|
| Protection heights mm        |                     |                 | 440                                   | 610 | 785      | 955   | 1130 | 1300 | 1475 | 1645 |
| Number of beams              |                     |                 | 9                                     | 13  | 17       | 21    | 25   | 29   | 33   | 37   |
| Resolution                   |                     | mm              | mm 55                                 |     |          |       |      |      |      |      |
| Lens pitch                   |                     | mm              | 43                                    |     |          |       |      |      |      |      |
| Lens diameter                |                     | mm              | 12                                    |     |          |       |      |      |      |      |
| Scanning range               | ning range m 0 ÷ 12 |                 |                                       |     |          |       |      |      |      |      |
| Ambient light imm            | unity               | ty lx > 50.000  |                                       |     |          |       |      |      |      |      |
| Response time                | time ms 1           |                 |                                       |     | 13 14 15 |       |      |      |      |      |
| Power supply                 |                     | V <sub>dc</sub> |                                       |     |          | 24 ±  | 20%  |      |      |      |
| Power consump-               | Emitter             |                 | 4,2                                   |     |          |       |      |      |      |      |
| tion<br>at 24V <sub>dc</sub> | Receiver            | VV              | 3,3                                   | 4   | 4,6      | 5,3   | 6    | 6,7  | 7,4  | 8,3  |
| Operating temperating        | ature               | °C              | 0 ÷ 55 (without condensation and ice) |     |          |       |      |      |      |      |
| Sealing                      |                     |                 |                                       |     |          | IP 65 |      |      |      |      |
|                              | Width               |                 | 50                                    |     |          |       |      |      |      |      |
| Dimensions                   | Depth               | mm              |                                       |     |          | 7     | 0    |      |      |      |
|                              | Height              |                 | 530                                   | 705 | 875      | 1050  | 1220 | 1395 | 1565 | 1735 |

# 

### Emitter and receiver: MULTIBEAM models.

| Model                        |                 | AS              | 418                                   | 618 | 718 | 918  | 1118  | 1218 | 1418 | 1618 |  |
|------------------------------|-----------------|-----------------|---------------------------------------|-----|-----|------|-------|------|------|------|--|
| Number of beams              |                 | 3               | 4                                     | 5   | 6   | 7    | 8     | 9    | 10   |      |  |
| Lens pitch                   |                 | mm              | 172                                   |     |     |      |       |      |      |      |  |
| Lens diameter                |                 | mm              |                                       | 12  |     |      |       |      |      |      |  |
| Scanning range               |                 | m               | 0 ÷ 12                                |     |     |      |       |      |      |      |  |
| Ambient light imm            | unity           | Ix              |                                       |     |     | > 50 | 0.000 |      |      |      |  |
| Response time                | esponse time ms |                 |                                       | 3   |     | 15   |       |      |      |      |  |
| Power supply                 |                 | V <sub>dc</sub> | 24 ± 20%                              |     |     |      |       |      |      |      |  |
| Power consump-               | Emitter         |                 | 4,2                                   |     |     |      |       |      |      |      |  |
| tion<br>at 24V <sub>dc</sub> | Receiver        | VV              | 3 max.                                |     |     |      |       |      |      |      |  |
| Operating tempera            | ature           | °C              | 0 ÷ 55 (without condensation and ice) |     |     |      |       |      |      |      |  |
| Sealing                      |                 |                 |                                       |     |     | IP   | 65    |      |      |      |  |
|                              | Width           |                 | 50                                    |     |     |      |       |      |      |      |  |
| Dimensions                   | Depth           | mm              | 70                                    |     |     |      |       |      |      |      |  |
|                              | Height          |                 | 530                                   | 705 | 875 | 1050 | 1220  | 1395 | 1565 | 1735 |  |

### Control unit AU S3.

| Power supply                             | V <sub>dc</sub> | 24 ± 20%                                                                      |
|------------------------------------------|-----------------|-------------------------------------------------------------------------------|
| Power consumption                        | W               | 5,5                                                                           |
| Output relays <sup>(*)</sup>             |                 | 2 N.O. contacts 2A 125V <sub>ac</sub><br>1 N.C. contact 2A 125V <sub>ac</sub> |
| Response time                            | ms              | ≤ 15                                                                          |
| Min. closing time<br>of the test contact | ms              | 10                                                                            |
| Test duration                            | ms              | 100                                                                           |
| Electrical connections                   |                 | Terminal blocks                                                               |
| Cable lenght <sup>(**)</sup>             | m               | 100 max                                                                       |
| Operating temperature                    | °C              | 0 ÷ 55                                                                        |
| Sealing<br>(housing)                     |                 | IP 40                                                                         |
| Sealing<br>(terminal blocks)             |                 | IP 2X                                                                         |
| Mechanical mounting                      |                 | Quick mounting on Omega rail according to EN 50022-35                         |
| Dimensions                               | mm              | 100 x 73 x 120                                                                |
| Weight                                   | g               | 500                                                                           |

(\*) Refer to "Load features" in the Electrical connection chapter (page 26).

(\*\*) We recommend shielded cable where the level of electrical disturbances is higher than the specified IEC 801-4/level IV.

<u> PREER</u>

# DIMENSIONS (in mm)

Emitters ASE and receivers ASR.



| Model<br>AS | 203 | 403<br>405<br>418 | 603<br>605<br>618 | 703<br>705<br>718 | 903<br>905<br>918 | 1103*<br>1105*<br>1118* | 1203*<br>1205*<br>1218* | 1403*<br>1405*<br>1418* | 1603*<br>1605*<br>1618* |
|-------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| А           | 250 | 425               | 595               | 770               | 940               | 1115                    | 1285                    | 1455                    | 1630                    |
| В           | 305 | 475               | 650               | 820               | 995               | 1165                    | 1340                    | 1510                    | 1680                    |
| Mounting    | 2   | LL bracket        | s with 2 m        | ackets with       | n 4 mount         | ing pins                |                         |                         |                         |

(\*) When the emitter and the receiver are exposed to hight vibrations, it is recommended to use the antivibration dampers (see page 29).

# <u> PREER</u>

### LL and LH brackets.



# Mounting pin and connectors.





73

47

LE

# Control unit AU S3.



# Deflection mirrors.





| Model    | Н    |
|----------|------|
| SP 200S  | 370  |
| SP 400S  | 540  |
| SP 600S  | 715  |
| SP 700S  | 885  |
| SP 900S  | 1060 |
| SP 1100S | 1230 |
| SP 1200S | 1400 |
| SP 1400S | 1575 |
| SP 1600S | 1750 |



Brackets for mirrors.



# <u> EREER</u>

# INSTALLATION

Referring to the EN 61496-1 European norm, a possible failure of a type 2 optoelectronic protective device is detected when the next test is applied.

Therefore, the following must be checked before installing the ARGOLUX AS series barrier:

# the risk assessment for the considered machine allows the use of a type 2 optoelectronic protective device.

For a type 2 protective device, the test sequence must be generated before any new energising of the output relays. Output relays are energized if no failure is detected during the test sequence.

Before installing the ARGOLUX AS series barrier, make sure that:

# the machine or the working cycle is adapted to the mode of operation of a type 2 protective device.

The working cycle of the machine or any dangerous movement must be set in motion using a specific command device such as a pushbutton. Therefore:

# the ARGOLUX AS safety barrier must be used as a protective device that outputs stop signals and not as a command device that outputs control signals.

When the test needs to be generated by the operator himself using a pushbutton, the following applies:

- The pushbutton should be fixed outside the dangerous area;
- The pushbutton must be installed at a point that gives the operator the best visibility of the dangerous zone.

Before installing the ARGOLUX AS safety barrier, the following must be checked:

- The moving part of the machine can be electrically controlled;
- It is possible to stop immediately any dangerous movement of the machine. Stopping time of the machine must be known;
- The machine cannot create dangerous situations related to the falling or the ejection of objects. If this is the case, additional mechanical guards must be installed;
- The minimum size of the detected object must be greater or equal to the selected model resolution.

The dimensions of the opening that gives access to the dangerous area and the calculated safety distance help in the choice of the right model.

These characteristics must be compared to the scanning distance, the protection height and the different resolutions of the ARGOLUX AS system.

The ARGOLUX AS light curtain should protected against moving equipment, oil, dust, etc.

The control unit AU S3 should be installed in an enclosure at least IP54.



Before installing the safety barrier, the following conditions should be observed:

- Ambient temperature should be compatible with the specified operating temperature.
- The emitter and the receiver should be protected against excessive light source intensity (greater than the specified ambient light immunity).
- Fog, rain, smoke or dust may influence optoelectronic devices. Therefore, we recommend to apply a correction value *Fc* to the specified nominal scanning range in order to guarantee a correct operation of the system:

Pu: maximum scanning range in meters.

*Pm*: nominal scanning range in meters for a clear environment. The following table shows the recommended correction values.

| ENVIRONMENT | CORRECTION VALUE<br>Fc |
|-------------|------------------------|
| Fog         | 0,25                   |
| Vapour      | 0,50                   |
| Dust        | 0,50                   |
| Thick smoke | 0,25                   |

• If sudden temperature variations are foreseen, proper measures should be taken to avoid condensation accumulation on lens. Excessive accumulation could generated unexpected alarm.

# POSITIONING AND SAFETY DISTANCES

The emitter and the receiver unit must be installed in such a way that any possible access to the danger zone leads to the occultation of at least one beam of the ARGOLUX AS system. The detection zone defined by the protection height and the scanning distance of the emitter and the receiver must prevent any possible access from the top, the bottom or the sides. The use of additional guards might be necessary (interlocked or fixed mechanical guards or additional safety light curtain).



Access to the danger zone from the bottom should not be possible without occulting the light curtain.

Access to the danger zone from the top should not be possible without occulting the light curtain.

Right-angle mounting: the horizontal barrier detects the operator body presence between the danger zone and the vertical detection field.

### Safety distances.

The safety distance between the protection field and the danger zone (figure 7, page 18) should be large enough to ensure that if the protection field is entered, the danger zone cannot be reached before the hazardous movement has ended or is interrupted. For the safety distance S, the EN 999 (Safety of machinary - The positioning of protective equipment in respect of

approach speeds of parts of the human body) European norm defines the following formula:

$$S = K(t_1 + t_2) + C$$

with:

*S*: minimum safety distance between the detection field and the danger zone (in mm).

**K**: approach speed of the operator (in mm/s).

| Model                         | AS 203 | AS 403           | AS 603           | AS 703           | AS 903           | AS 1103            | AS 1203            | AS 1403            | AS 1603            |
|-------------------------------|--------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|
| Total response time $t_1$ (s) | 0,028  | 0,0              | )29              | 0,0              | )30              | 0,0                | )31                | 0,0                | )32                |
| Model                         |        | AS 405<br>AS 418 | AS 605<br>AS 618 | AS 705<br>AS 718 | AS 905<br>AS 918 | AS 1105<br>AS 1118 | AS 1205<br>AS 1218 | AS 1405<br>AS 1418 | AS 1605<br>AS 1618 |
| Total response time $t_1$ (s) |        | 0,028            |                  | 0,029            |                  | 0,030              |                    |                    |                    |

 $t_1$ : response time of the barrier (in s), i.e. response time of the control unit AU S3 plus response time of the ARGOLUX AS light curtain. The following table shows for each model the value  $t_1$ .

t2: stopping time of the machine (in s).

- *C*: guarding space (in mm).
  - If possible access to danger zone is still foreseen, the Argolux AS safety barrier must be completed with additional mechanical guards.

Versions with a 35 mm resolution.





Fig. 7 Minimum safety distance should be observed.

#### Vertical mounting (fig. 8).

The minimum safety distance *S* allowed from the danger zone to the vertical detection plane should be no less than that calculated using the following formula:

 $S = 2000(t_1 + t_2) + 168$ 

This formula applies for all safety distances of *S* greater than 100mm and up to and including 500mm. If *S* is found to be greater than 500mm using the above-mentioned formula, then the distance may be reduced using the following formula with a minimum distance of 500mm:

 $S = 1600(t_1 + t_2) + 168$ 

When access to the danger zone can be gained over the top or the bottom of the barrier or laterally, additional safeguarding devices should be provided to prevent access. They should comply with requirements of both EN 294 and prEN 811 European norms.

#### Horizontal mounting (fig. 9).

If the direction of approach is parallel to the plane of detection, e.g. if the barrier is horizontally mounted, the minimum safety distance *S* from the danger zone to the outer beam depends on the height *H* of the curtain above the ground. This safety distance *S* should be calculated using the following formula:

 $S = 1600(t_1 + t_2) + 1200 - 0.4H$ 

The height Hshould be a maximum of 1000mm from the ground. However, if the installation height H is greater than 300mm, there is a risk of inadvertent undetected access beneath the curtain, and additional safety measures are required.

Versions with a 55mm resolution.

Devices with a 55mm resolution are considered by the EN 999 standard to be sets of multiple indipendent beams. They will no detect intrusion of the hands, and therefore shall only be used where the risk assessment indicated that detection of the hands is inappropriate. The ARGOLUX AS with 55mm resolution is designed to detect arms, legs or the whole body of the operator.

#### Vertical mounting (fig. 8).

The minimum safety distance *S* allowed from the danger zone to the vertical detection plane should be calculated using the following formula:

$$S = 1600(t_1 + t_2) + 850$$

The risk of inadvertent access should be taken into account during the risk assessment stage, but in all cases, the height H of the uppermost beam should be greater or equal to 900mm, and the height P of the lowest beam should be lower or equal to 300mm.

#### Horizontal mounting (fig. 9).

If the direction of approach is parallel to the plane of detection, e.g. if the barrier is horizontally mounted, the minimun safety distance S from the danger zone to the outer beam depends on the height H of the curtain above the ground. This safety distance S should be calculated using the following formula:

$$S = 1600(t_1 + t_2) + 1200 - 0.4H$$

The height *H* should be a maximum of 1000mm from the ground and the lowest allowable installation height of the 55mm resolution device is 75mm from the ground. However, if the installation height H is greater than 300mm there is a risk of inadvertent undetected access beneath the curtain, and this must be taken into account in the risk assessment.



Fig. 8



Fig. 9

MULTIBEAM models.

The Argolux AS MULTIBEAM models shall be used only to detect intrusion of the whole body of a person and not parts of the body (hands, legs, ...).

Vertical mounting (fig. 10).

This safety distance *S* should be calculated using the following formula:

$$S = 1600(t_1 + t_2) + 850$$



Fig. 10 MULTIBEAM models: trip sensing and safety distance.

#### Horizontal mounting.

Due to the optical characteristic (pitch of the beams), the MULTIBEAM models shall not be used as presence sensing AOPDs.

For the horizontal mounting please refer to the models with an ODC of 35 or 55 mm.

### GROUPING OF SEVERAL SETS

When several sets of the ARGOLUX AS system are used in the same area, it is necessary to avoid mutual interference between sets. Figure 11 shows a few simple rules to avoid mutual interference which may cause unexpected alarms.

# <u> PREER</u>

The neighbouring sets should be operated in the reverse direction with synchronisation beams in opposition as shown below (figure 11).



P1, P2: emitters. R1, R2: receivers.

Fig. 11 Correct assembly of two neighbouring sets.

### **REFLECTING SURFACES**

The effective opening angle of the beams and the alignment tolerance for the emitter and the receiver are approximately  $\pm 4^{\circ}$  in compliance with the prEN 61496-2 European project norm.



Fig. 12 Reflecting surface S can cause light deflection.

Since reflecting surfaces within the detection zone can cause light deflection (see fig. 12) and therefore non-detection of an obstacle, a minimum distance *d* should be observed.





Fig. 13 The reflective surfaces must be at a distance  $\geq\! d.$ 

Just after the installation, check the absence of any reflecting surface using the test rod delivered with the safety barrier. If no light is deflected, the test rod should be continuously detected all over the detection field.

The red LED of the receiver unit should never switch off while the test rod is being moved in the central area of the detection field and near the emitter and receiver units.

# DEFLECTION MIRRORS

For the protection or control of dangerous zones with openings on several sides, deflection mirrors can be used.

If emitted light must be deflected with a 90° angle, the mirrors surface and the beam's path must form a  $45^{\circ}$  angle.

The figure below shows an application using 2 deflection mirrors in a "U" shape configuration.



Fig. 14 Use of two deflection mirrors.

Instructions for mirrors use:

- Mirrors should be installed in such a way that the minimum calculated safety distance *S* is achieved on each side of the perimeter (see figure 14).
- Total lenght of the perimeter should be smaller or equal to the scanning range taking into account the attenuation due to mirrors (expect a 10% decrease on the scanning range per added mirror).
- Optical alignment of the emitter unit, the receiver unit and mirror(s) must be carefully carried out.
- It is recommended to use a maximum of 3 mirrors.

# ELECTRICAL CONNECTION

Wiring should be carried out according to wiring diagram shown on page 27. Before connecting the device, make sure your power supply features correspond to the product specifications:

 $\label{eq:constraint} \fbox{Emitter, receiver and control unit should be powered with 24V_{dc}\pm$  20% (refer to power consumptions on page 11 and 12).

No other devices shall be connected to the emitter and receiver connectors.

For a good reliability, the output capacitance of the power supply should have at least a value of  $2000\mu$ F for ampere of current input (refer to power consumptions on page 11).

#### Load features.

The control unit AU S3 is equipped with two output relays A and B (with guided contacts). Even if these relays are specified for higher coil voltages and load currents, make sure that the load features comply with the indications of the following table to guarantee a correct operation and avoid damage or quick ageing of A and B internal relays.

For loads with higher switching characteristics use K1 and K2 additional relays.

| Minimum switching voltage | 15V <sub>dc</sub>  |  |  |
|---------------------------|--------------------|--|--|
| Minimum switching current | 20mA               |  |  |
| Maximum switched voltage  | 125V <sub>ac</sub> |  |  |
| Maximum switched current  | 2A                 |  |  |

#### Use of additional relays K1 and K2.

If additional relays K1 and K2 are used to increase the number of contacts available on the AU S3 control unit or to increase the switching capacity of its inner relays A and B, connection diagram B (page 27) must be used.

- K1 and K2 must be safety relays with guided contacts.
- Used K1 and K2 contacts as indicated in the following table.
- The feedback control is set if K1-1(NO) and K2-1 (NC) are connected in serial between terminal 5 and 6 on the control unit (commutated signal: 20mA/24V<sub>dc</sub>).

|                            | K1 relay             | K2 relay             |  |  |
|----------------------------|----------------------|----------------------|--|--|
| Feedback control           | K1-1 normally open   | K2-1 normally closed |  |  |
| Machine stopping circuitry | K1-2 normally closed | K2-2 normally open   |  |  |

• The interference suppressors must be connected in parallel with K1 and K2 relay coils.

### Instruction related to the connection cable.

- For cable length longer than 50m, use cables with a ø1mm<sup>2</sup> section.
- Connect earth terminals of the emitter, the receiver and the control unit to the main earth of the machine.
- The emitter and receiver cables should be installed far from any high-power cables. This is also valid for cables used for the test command and the self-diagnostic signal.
- If the control unit is located far from the emitter and receiver (for a distance longer than 50m), it is recommended to use shielded cables.
- The safety barrier should be installed far from any high-power supply or any electromagnetic field source.

#### Test command.

- Test is applied when connection between terminals 15 and 16 is made. Normally open contact of an external push-button can be used. The temporary closing of that normally open contact generates a test sequence.
- The contact between terminals 15 and 16 must be maintained for at least 10ms to generate a test sequence. This must be observed particularly if the test sequence is automatically generated by a Programmable Logical Controller (PLC).
- Test duration is 100ms which means that relays A and B will be energized 100ms after the test is applied.
- If the test command is activated while a test sequence is being performed, it will interrupt the current test sequence and a new test sequence will start for another 100ms period. Activating the test command twice within the 100ms period is therefore not recommended.
- Contact used to generate a test sequence must be able to switch a 20mA/24V<sub>dc</sub> signal.

# <u> BREER</u>

# Connection diagram A: Direct use of control unit relay outputs.



Connection diagram B: Use of additional relays K1 and K2.



# MOUNTING AND OPTICAL ALIGNMENT

The emitter and the receiver must be installed opposite each other. The distance between the emitter and the receiver must not exceed the specified nominal scanning range. Brackets are delivered with AS emitter and receiver units. The emitter and the receiver should be parallel in the same plane, at the same height and with connectors on the same side.

Emitter and receiver modules are equipped with M6 screws (see Dimensions) fixed at the back of the housing. These M6 screws can be used either for direct mounting with the provided nuts, or in conjunction with brackets (see figure 15 and figure 16).



Fig. 15 Mounting of the emitter and receiver units.

The optimum optical alignment between emitter and receiver is essential for the correct operation of the system. The emitter and the receiver are equipped with LED's which help adjust the optical alignment.

To achieve an optimum alignment, the optical axis of the outer beams of both emitter and receiver must mix up.

Install the receiver and adjust the emitter as follows:

- Adjustment of the synchronisation beam: sight the emitter in direction of the receiver. Then move the emitter from top to bottom and from left to right in order to find extreme positions of the synchronisation beam for which the green LED of the emitter switches off. This green LED provides information on the synchronisation beam reception. The optimum position is the intermediary position between extreme positions.
- Adjustment of protective beams: use the synchronisation beam as a pivot and move laterally the opposite outer beam in order to find the extreme positions, for which the yellow LED of the receiver switches off. The optimum position is the intermediary position between extreme positions.

When the optimum adjustment is achieved, rigidly fix both emitter and receiver.

If the emitter and the receiver are installed on machines exposed to high vibrations, it is recommended to use antivibration dampers to keep optics aligned (see figure 16).



Fig. 16 Mounting of brackets and antivibration dampers.

### INSPECTION AND MAINTENANCE

Inspection.

Each time the machine is powered up, it is necessary to test the correct response of the safety curtain over the whole protection field.

The following procedure using the test rod provided with the Argolux AS system must be carried out.

With reference to figure 17:

- Introduce the test rod in the detection zone and move it from top to bottom in the center of the detection zone first, then near the emitter and the receiver.
- The red LED of the receiver should be permanently lit during the move of the test rod in the detection zone.



Fig. 17 Functional test of the barrier.

The ARGOLUX AS safety curtain does not require any specific maintenance intervention. However, it is recommended to clean transparent front plates to avoid excessive dust accumulation.

The cleaning must be done with a soft, clean and wet cloth. In a dusty environment, it is recommended to spray an antistatic product on trasparent front plates after cleaning.

Never use abrasive or corrosive products, solvents or alcohol or any other product which would obscure the transparent front plates. Never use a woollen cloth in order to avoid accumulation of electrostatic charges on transparent front plates.

# TROUBLE SHOOTING

Information displayed by LED's on the emitter, the receiver and the control unit help diagnosing malfunctions of the system.

If an unexpected alarm occurs, generate a test sequence through the test command to check if the alarm signal is due to random electrical disturbances. If the test activation does not solve the problem, it might be necessary to switch off and restore the power supply.

If no improvement is observed, check the following points:

- check all the wiring;
- check that the supply features meet the ARGOLUX AS system supply tolerance;
- check the presence of the interference suppressors connected in parallel with the additional relay coils;
- check the correct alignment of the emitter and receiver and the cleanness of their transparent front plates.

If the system remains out of order despite all the above mentioned controls, please get in touch with us and provide us with the following information:

- serial number;
- purchasing date;
- working period;
- details of the installation;
- symptoms of failure.

# ORDERING CODE, ACCESSORIES AND SPARE PARTS

# Ordering code.

| ITEM                                     |         | CODE    | ITEM                     |          | CODE    | ITEM                      |          | CODE    |
|------------------------------------------|---------|---------|--------------------------|----------|---------|---------------------------|----------|---------|
| Emitter<br>and receiver<br>ø35mm (*)     | AS 203  | 1201430 | Emitter<br>ø35mm (°)     | ASE 203  | 1401430 | Receiver<br>ø35mm (°)     | ASR 203  | 1501430 |
|                                          | AS 403  | 1201431 |                          | ASE 403  | 1401431 |                           | ASR 403  | 1501431 |
|                                          | AS 603  | 1201436 |                          | ASE 603  | 1401436 |                           | ASR 603  | 1501436 |
|                                          | AS 703  | 1201432 |                          | ASE 703  | 1401432 |                           | ASR 703  | 1501432 |
|                                          | AS 903  | 1201437 |                          | ASE 903  | 1401437 |                           | ASR 903  | 1501437 |
|                                          | AS 1103 | 1201433 |                          | ASE 1103 | 1401433 |                           | ASR 1103 | 1501433 |
|                                          | AS 1203 | 1201435 |                          | ASE 1203 | 1401435 |                           | ASR 1203 | 1501435 |
|                                          | AS 1403 | 1201434 |                          | ASE 1403 | 1401434 |                           | ASR 1403 | 1501434 |
|                                          | AS 1603 | 1201438 |                          | ASE 1603 | 1401438 |                           | ASR 1603 | 1501438 |
| ITEM                                     |         | CODE    | ITEM                     |          | CODE    | ITEM                      |          | CODE    |
|                                          | AS 405  | 1201451 | Emitter<br>8 Ø55mm (°)   | ASE 405  | 1401451 | Receiver<br>ø55mm (°)     | ASR 405  | 1501451 |
|                                          | AS 605  | 1201456 |                          | ASE 605  | 1401456 |                           | ASR 605  | 1501456 |
|                                          | AS 705  | 1201452 |                          | ASE 705  | 1401452 |                           | ASR 705  | 1501452 |
| Emitter .<br>and receiver<br>ø55mm (*) . | AS 905  | 1201457 |                          | ASE 905  | 1401457 |                           | ASR 905  | 1501457 |
|                                          | AS 1105 | 1201453 |                          | ASE 1105 | 1401453 |                           | ASR 1105 | 1501453 |
|                                          | AS 1205 | 1201455 |                          | ASE 1205 | 1401455 |                           | ASR 1205 | 1501455 |
|                                          | AS 1405 | 1201454 |                          | ASE 1405 | 1401454 |                           | ASR 1405 | 1501454 |
|                                          | AS 1605 | 1201458 |                          | ASE 1605 | 1401458 |                           | ASR 1605 | 1501458 |
| ITEM                                     |         | CODE    | ITEM                     |          | CODE    | ITEM                      |          | CODE    |
|                                          | AS 418  | 1201481 | Emitter<br>Multibeam (°) | ASE 418  | 1401481 | Receiver<br>Multibeam (°) | ASR 418  | 1501481 |
| Emitter<br>and receiver<br>Multibeam (*) | AS 618  | 1201486 |                          | ASE 618  | 1401486 |                           | ASR 618  | 1501486 |
|                                          | AS 718  | 1201482 |                          | ASE 718  | 1401482 |                           | ASR 718  | 1501482 |
|                                          | AS 918  | 1201487 |                          | ASE 918  | 1401487 |                           | ASR 918  | 1501487 |
|                                          | AS 1118 | 1201483 |                          | ASE 1118 | 1401483 |                           | ASR 1118 | 1501483 |
|                                          | AS 1218 | 1201485 |                          | ASE 1218 | 1401485 |                           | ASR 1218 | 1501485 |
|                                          | AS 1418 | 1201484 |                          | ASE 1418 | 1401484 |                           | ASR 1418 | 1501484 |
|                                          | AS 1618 | 1201488 |                          | ASE 1618 | 1401488 |                           | ASR 1618 | 1501488 |
| ITEM                                     |         |         |                          |          | co      | DE                        |          |         |
| Control unit AU S3                       |         |         |                          |          | 1201    | 1702                      |          |         |

With two female connectors, brackets and screws, installation manual. With one female connector, brackets and screws, installation manual. (\*) (°)

# 

### Accessories.

|                        | CODE                                   |         |
|------------------------|----------------------------------------|---------|
| Deflection<br>mirrors  | SP 200S (AS 203)                       | 1201800 |
|                        | SP 400S (AS 403 – AS 405 – AS 418)     | 1201801 |
|                        | SP 600S (AS 603 – AS 605 – AS 618)     | 1201811 |
|                        | SP 700S (AS 703 – AS 705 – AS 718)     | 1201802 |
|                        | SP 900S (AS 903 – AS 905 – AS 918)     | 1201812 |
|                        | SP 1100S (AS 1103 – AS 1105 – AS 1118) | 1201803 |
|                        | SP 1200S (AS 1203 – AS 1205– AS 1218)  | 1201810 |
|                        | SP 1400S (AS 1403 – AS 1405– AS 1418)  | 1201804 |
|                        | SP 1600S (AS 1603 – AS 1605)           | 1201813 |
| Kit of 4 antivibration | 1200084                                |         |
| Kit of 6 antivibration | 1200085                                |         |
| Test rod (ø35mm)       | 7170119                                |         |

# Spare parts.

| PRODUCT                       | CODE    |
|-------------------------------|---------|
| Kit of 4 LL bracket with nuts | 7200037 |
| Kit of 4 LH bracket with nuts | 7200081 |
| Kit of 4 mounting pin         | 7200038 |
| Female connector              | 7200062 |

# WARRANTY

For every newly produced ARGOLUX series AS system, in normal utilisation conditions, the REER company provides a 12 (twelve) month warranty against material and manufacturing defects.

Over said time period, REER undertakes to eliminate any product faults through repair or replacement of defective parts, totally free of charge, where both materials and labour are concerned.

REER reserves the right to replace, in lieu of repairing, the defective system in its entirety with another of the same type and characteristics.

This warranty is valid under the following conditions:

- The fault is notified to REER within twelve months of the date of delivery of the product.
- The equipment and its components are in the conditions in which they have been delivered by REER.
- Part numbers are clearly legible.
- The fault or malfunctioning has not been generated, directly or indirectly, by:
  - Use for inappropriate purposes;
  - Failure to comply with utilisation instructions;
  - Negligence, erroneous use, incorrect maintenance;
  - Repairs, changes, adaptations not performed by REER personnel, tampering, etc.;
  - Accidents or collisions (also due to transport or force majeure events);
  - Other causes which cannot be ascribed to REER.

Repairs shall be performed at the REER laboratories, where the material must be delivered or shipped: transport expenses and possible risks of the material being lost or damaged during transport shall be borne by the customer.

All products and components replaced shall become the property of REER.

REER does not recognise any other warranties or rights other than those expressly described above; in no case shall REER be liable for damages, disruption of activities or other factors or circumstances in any way correlated with the malfunctioning of its products or any parts thereof.

The main requisite to get a correct operating function of a photoelectric barrier is the precise and full observance of all rules, directions and prohibitions shown in these technical sheets.

*REER s.p.a.*, consequently, declines all responsabilities for any complaint due to the unrespect (even if partial) of such instructions.

Features might change without notice. No part of this sheet can be reproduced without permission of REER.